

Learning Data Mining with
Python
Second Edition

Robert Layton

BIRMINGHAM - MUMBAI

Learning Data Mining with Python
Second Edition
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Second edition: April 2017

Production reference: 1250417

ISBN 978-1-78712-678-7

Credits

Author

Robert Layton

Copy Editor

Vikrant Phadkay

Reviewer

Asad Ahamad

Project Coordinator

Nidhi Joshi

Commissioning Editor

Veena Pagare

Proofreader

Safis Editing

Acquisition Editor

Divya Poojari

Indexer

Mariammal Chettiyar

Content Development Editor

Tejas Limkar

Graphics

Tania Dutta

Technical Editor

Danish Shaikh

Production Coordinator

Aparna Bhagat

  

About the Author
Robert Layton is a data scientist investigating data-driven applications to businesses across
a number of sectors. He received a PhD investigating cybercrime analytics from the Internet
Commerce Security Laboratory at Federation University Australia, before moving into
industry, starting his own data analytics company dataPipeline
(). Next, he created Eureaktive (), which
works with tech-based startups on developing their proof-of-concepts and early-stage
prototypes. Robert also runs , which is one of the world's
premier tutorial websites for Google's TensorFlow library.

Robert is an active member of the Python community, having used Python for more than 8
years. He has presented at PyConAU for the last four years and works with Python
Charmers to provide Python-based training for businesses and professionals from a wide
range of organisations.

Robert can be best reached via Twitter

Thank you to my family for supporting me on this journey, thanks to all the readers of
revision 1 for making it a success, and thanks to Matty for his assistance behind-the-scenes
with the book.

About the Reviewer
Asad Ahamad is a data enthusiast and loves to work on data to solve challenging problems.

He did his masters in Industrial Mathematics with Computer Application from Jamia Millia
Islamia, New Delhi. He admires Mathematics a lot and always tries to use it to gain
maximum profit for business.

He has good experience working on data mining, machine learning and data science and
worked for various multinationals in India. He mainly uses R and Python to perform data
wrangling and modeling. He is fond of using open source tools for data analysis.

He is active social media user. Feel free to connect him on twitter

www.PacktPub.com
For support files and downloads related to your book, please visit .

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at .

If you'd like to join our team of regular reviewers, you can e-mail us at
. We award our regular reviewers with free eBooks and

videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

Table of Contents
Preface 1

Chapter 1: Getting Started with Data Mining 7

Introducing data mining 7
Using Python and the Jupyter Notebook 9

Installing Python 10
Installing Jupyter Notebook 11
Installing scikit-learn 13

A simple affinity analysis example 14
What is affinity analysis? 14

Product recommendations 14
Loading the dataset with NumPy 15

Downloading the example code 17
Implementing a simple ranking of rules 18
Ranking to find the best rules 21

A simple classification example 23
What is classification? 24

Loading and preparing the dataset 24
Implementing the OneR algorithm 26
Testing the algorithm 28

Summary 31

Chapter 2: Classifying with scikit-learn Estimators 32

scikit-learn estimators 32
Nearest neighbors 33
Distance metrics 34
Loading the dataset 37
Moving towards a standard workflow 39
Running the algorithm 40
Setting parameters 41

Preprocessing 43
Standard pre-processing 45
Putting it all together 46

Pipelines 46
Summary 48

[ii]

Chapter 3: Predicting Sports Winners with Decision Trees 49

Loading the dataset 49
Collecting the data 50
Using pandas to load the dataset 51
Cleaning up the dataset 52
Extracting new features 54

Decision trees 56
Parameters in decision trees 57
Using decision trees 58

Sports outcome prediction 59
Putting it all together 59

Random forests 63
How do ensembles work? 64
Setting parameters in Random Forests 65
Applying random forests 65
Engineering new features 67

Summary 68

Chapter 4: Recommending Movies Using Affinity Analysis 69

Affinity analysis 70
Algorithms for affinity analysis 71
Overall methodology 72

Dealing with the movie recommendation problem 72
Obtaining the dataset 73

Loading with pandas 73
Sparse data formats 74

Understanding the Apriori algorithm and its implementation 75
Looking into the basics of the Apriori algorithm 77
Implementing the Apriori algorithm 78
Extracting association rules 81
Evaluating the association rules 84

Summary 87

Chapter 5: Features and scikit-learn Transformers 88

Feature extraction 89
Representing reality in models 89
Common feature patterns 92
Creating good features 96

Feature selection 97
Selecting the best individual features 99

[iii]

Feature creation 102
Principal Component Analysis 105
Creating your own transformer 108

The transformer API 108
Implementing a Transformer 109

Unit testing 110
Putting it all together 111
Summary 112

Chapter 6: Social Media Insight using Naive Bayes 113

Disambiguation 114
Downloading data from a social network 115

Loading and classifying the dataset 117
Creating a replicable dataset from Twitter 121

Text transformers 125
Bag-of-words models 125
n-gram features 127
Other text features 128

Naive Bayes 129
Understanding Bayes' theorem 129
Naive Bayes algorithm 130
How it works 131

Applying of Naive Bayes 133
Extracting word counts 133
Converting dictionaries to a matrix 134
Putting it all together 135
Evaluation using the F1-score 136

Getting useful features from models 137
Summary 140

Chapter 7: Follow Recommendations Using Graph Mining 141

Loading the dataset 141
Classifying with an existing model 143

Getting follower information from Twitter 146
Building the network 148

Creating a graph 151
Creating a similarity graph 153

Finding subgraphs 157
Connected components 157
Optimizing criteria 161

[iv]

Summary 164

Chapter 8: Beating CAPTCHAs with Neural Networks 166

Artificial neural networks 167
An introduction to neural networks 168

Creating the dataset 170
Drawing basic CAPTCHAs 171
Splitting the image into individual letters 174
Creating a training dataset 177

Training and classifying 179
Back-propagation 182

Predicting words 183
Improving accuracy using a dictionary 188
Ranking mechanisms for word similarity 188
Putting it all together 189

Summary 190

Chapter 9: Authorship Attribution 192

Attributing documents to authors 193
Applications and use cases 194
Authorship attribution 195

Getting the data 197
Using function words 200

Counting function words 201
Classifying with function words 204

Support Vector Machines 205
Classifying with SVMs 206
Kernels 207

Character n-grams 207
Extracting character n-grams 208

The Enron dataset 209
Accessing the Enron dataset 210
Creating a dataset loader 210

Putting it all together 213
Evaluation 214
Summary 216

Chapter 10: Clustering News Articles 218

Trending topic discovery 219
Using a web API to get data 219
Reddit as a data source 222

[v]

Getting the data 223
Extracting text from arbitrary websites 226

Finding the stories in arbitrary websites 226
Extracting the content 228

Grouping news articles 230
The k-means algorithm 231

Evaluating the results 234
Extracting topic information from clusters 237
Using clustering algorithms as transformers 238

Clustering ensembles 239
Evidence accumulation 239
How it works 243
Implementation 245

Online learning 246
Implementation 247

Summary 250

Chapter 11: Object Detection in Images using Deep Neural Networks 251

Object classification 252
Use cases 252

Application scenario 254
Deep neural networks 257

Intuition 257
Implementing deep neural networks 259

An Introduction to TensorFlow 260
Using Keras 264

Convolutional Neural Networks 269
GPU optimization 271

When to use GPUs for computation 272
Running our code on a GPU 273
Setting up the environment 274

Application 275
Getting the data 276
Creating the neural network 277
Putting it all together 279

Summary 280

Chapter 12: Working with Big Data 282

Big data 283
Applications of big data 284

[vi]

MapReduce 286
The intuition behind MapReduce 288

A word count example 290
Hadoop MapReduce 292

Applying MapReduce 293
Getting the data 293

Naive Bayes prediction 295
The mrjob package 295

Extracting the blog posts 296
Training Naive Bayes 298
Putting it all together 302
Training on Amazon's EMR infrastructure 307
Summary 311

: Next Steps... 312

Getting Started with Data Mining 312
Scikit-learn tutorials 312
Extending the Jupyter Notebook 313
More datasets 313
Other Evaluation Metrics 313
More application ideas 313

Classifying with scikit-learn Estimators 314
Scalability with the nearest neighbor 314
More complex pipelines 314
Comparing classifiers 315
Automated Learning 315

Predicting Sports Winners with Decision Trees 316
More complex features 316
Dask 317
Research 317

Recommending Movies Using Affinity Analysis 317
New datasets 317
The Eclat algorithm 318
Collaborative Filtering 318

Extracting Features with Transformers 318
Adding noise 318
Vowpal Wabbit 319
word2vec 319

Social Media Insight Using Naive Bayes 319
Spam detection 319

[vii]

Natural language processing and part-of-speech tagging 320
Discovering Accounts to Follow Using Graph Mining 320

More complex algorithms 320
NetworkX 320

Beating CAPTCHAs with Neural Networks 321
Better (worse?) CAPTCHAs 321
Deeper networks 321
Reinforcement learning 322

Authorship Attribution 322
Increasing the sample size 322
Blogs dataset 322
Local n-grams 322

Clustering News Articles 323
Clustering Evaluation 323
Temporal analysis 323
Real-time clusterings 324

Classifying Objects in Images Using Deep Learning 324
Mahotas 324
Magenta 325

Working with Big Data 325
Courses on Hadoop 325
Pydoop 325
Recommendation engine 325
W.I.L.L 326

More resources 326
Kaggle competitions 326

Coursera 326

Index 327

Preface
The second revision of Learning Data Mining with Python was written with the programmer
in mind. It aims to introduce data mining to a wide range of programmers, as I feel that this
is critically important to all those in the computer science field. Data mining is quickly
becoming the building block of the next generation of Artificial Intelligence systems. Even if
you don't find yourself building these systems, you will be using them, interfacing with
them, and being guided by them. Understand the process behind them is important and
helps you get the best out of them.
The second revision builds upon the first. Many of chapters and exercises are similar,
although new concepts are introduced and exercises are expanded in scope. Those that had
read the first revision should be able to move quickly through the book and pick up new
knowledge along the way and engage with the extra activities proposed. Those new to the
book are encouraged to take their time, do the exercises and experiment. Feel free to break
the code to understand it, and reach out if you have any questions.
As this is a book aimed at programmers, we assume that you have some knowledge of
programming and of Python itself. For this reason, there is little explanation of what
the Python code itself is doing, except in cases where it is ambiguous.

What this book covers
, Getting started with data mining, introduces the technologies we will be using,

along with implementing two basic algorithms to get started.

, Classifying with scikit-learn, covers classification, a key form of data mining.
You’ll also learn about some structures for making your data mining experimentation easier
to perform..

, Predicting Sports Winners with Decisions Trees, introduces two new algorithms,
Decision Trees and Random Forests, and uses it to predict sports winners by creating useful
features..

, Recommending Movies using Affinity Analysis, looks at the problem of
recommending products based on past experience, and introduces the Apriori algorithm.

, Features and scikit-learn Transformers, introduces more types of features you can
create, and how to work with different datasets.

Preface

[2]

, Social Media Insight using Naive Bayes, uses the Naïve Bayes algorithm to
automatically parse text-based information from the social media website Twitter.

, Follow Recommendations Using Graph Mining, applies cluster analysis and
network analysis to find good people to follow on social media.

, Beating CAPTCHAs with Neural Networks, looks at extracting information from
images, and then training neural networks to find words and letters in those images.

, Authorship attribution, looks at determining who wrote a given documents, by
extracting text-based features and using Support Vector Machines.

, Clustering news articles, uses the k-means clustering algorithm to group
together news articles based on their content.

, Object Detection in Images using Deep Neural Networks, determines what type of
object is being shown in an image, by applying deep neural networks.

, Working with Big Data, looks at workflows for applying algorithms to big data
and how to get insight from it.

, Next step, goes through each chapter, giving hints on where to go next for a
deeper understanding of the concepts introduced.

What you need for this book
It should come as no surprise that you’ll need a computer, or access to one, to complete the
book. The computer should be reasonably modern, but it doesn’t need to be overpowered.
Any modern processor (from about 2010 onwards) and 4 gigabytes of RAM will suffice, and
you can probably run almost all of the code on a slower system too.

The exception here is with the final two chapters. In these chapters, I step through using
Amazon’s web services (AWS) for running the code. This will probably cost you some
money, but the advantage is less system setup than running the code locally. If you don’t
want to pay for those services, the tools used can all be set-up on a local computer, but you
will definitely need a modern system to run it. A processor built in at least 2012, and more
than 4 GB of RAM are necessary.

I recommend the Ubuntu operating system, but the code should work well on Windows,
Macs, or any other Linux variant. You may need to consult the documentation for your
system to get some things installed though.

Preface

[3]

In this book, I use pip for installing code, which is a command line tool for installing Python
libraries. Another option is to use Anaconda, which can be found online here:

I also have tested all code using Python 3. Most of the code examples work on Python 2
with no changes. If you run into any problems, and can’t get around it, send an email and
we can offer a solution.

Who this book is for
This book is for programmers that want to get started in data mining in an application-
focused manner.

If you haven’t programmed before, I strongly recommend that you learn at least the basics
before you get started. This book doesn’t introduce programming, nor does it give too much
time to explaining the actual implementation (in-code) of how to type out the instructions.
That said, once you go through the basics, you should be able to come back to this book
fairly quickly – there is no need to be an expert programmer first!

I highly recommend that you have some Python programming experience. If you don’t, feel
free to jump in, but you might want to take a look at some Python code first, possibly
focused on tutorials using the IPython notebook. Writing programs in the IPython notebook
works a little differently than other methods, such as writing a Java program in a fully-
fledged IDE.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The next
lines of code read the link and assign it to the to the function."

A block of code is set as follows:

Preface

[4]

Any command-line input or output is written as follows:

$ conda install scikit-learn

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.
To send us general feedback, simply e-mail , and mention the
book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
and register to have the files e-mailed directly to you.

Preface

[5]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
. The benefit of the github

repository is that any issues with the code, including problems relating to software version
changes, will be kept track of and the code there will include changes from readers around
the world. We also have other code bundles from our rich catalog of books and videos
available at . Check them out!

To avoid indention issues please use the code bundle to run the codes in the IDE instead of copying
directly from the PDF.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

Preface

[6]

To view the previously submitted errata, go to
and enter the name of the book in the search field. The required information will

appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at , and we will do our best to address the problem.

11
Getting Started with Data

Mining
We are collecting information about our world on a scale that has never been seen before in
the history of humanity. Along with this trend, we are now placing more day-to-day
importance on the use of this information in everyday life. We now expect our computers to
translate web pages into other languages, predict the weather with high accuracy, suggest
books we would like, and to diagnose our health issues. These expectations will grow into
the future, both in application breadth and efficacy. Data Mining is a methodology that we
can employ to train computers to make decisions with data and forms the backbone of
many high-tech systems of today.

The Python programming language is fast growing in popularity, for a good reason. It
gives the programmer flexibility, it has many modules to perform different tasks, and
Python code is usually more readable and concise than in any other languages. There is a
large and an active community of researchers, practitioners, and beginners using Python for
data mining.

In this chapter, we will introduce data mining with Python. We will cover the following
topics

What is data mining and where can we use it?
Setting up a Python-based environment to perform data mining
An example of affinity analysis, recommending products based on purchasing
habits
An example of (a classic) classification problem, predicting the plant species
based on its measurement

Getting Started with Data Mining

[8]

Introducing data mining
Data mining provides a way for a computer to learn how to make decisions with data. This
decision could be predicting tomorrow's weather, blocking a spam email from entering
your inbox, detecting the language of a website, or finding a new romance on a dating site.
There are many different applications of data mining, with new applications being
discovered all the time.

Data mining is part algorithm design, statistics, engineering, optimization,
and computer science. However, combined with these base skills in the
area, we also need to apply domain knowledge (expert knowledge)of the
area we are applying the data mining. Domain knowledge is critical for
going from good results to great results. Applying data mining effectively
usually requires this domain-specific knowledge to be integrated with the
algorithms.

Most data mining applications work with the same high-level view, where a model learns
from some data and is applied to other data, although the details often change quite
considerably.

Data mining applications involve creating data sets and tuning the algorithm as explained
in the following steps

We start our data mining process by creating a dataset, describing an aspect of1.
the real world. Datasets comprise of the following two aspects:

Samples: These are objects in the real world, such as a book,
photograph, animal, person, or any other object. Samples are also
referred to as observations, records or rows, among other naming
conventions.
Features: These are descriptions or measurements of the samples in
our dataset. Features could be the length, frequency of a specific word,
the number of legs on an animal, date it was created, and so on.
Features are also referred to as variables, columns, attributes or
covariant, again among other naming conventions.

The next step is tuning the data mining algorithm. Each data mining algorithm2.
has parameters, either within the algorithm or supplied by the user. This tuning
allows the algorithm to learn how to make decisions about the data.

Getting Started with Data Mining

[9]

As a simple example, we may wish the computer to be able to categorize people as short or
tall. We start by collecting our dataset, which includes the heights of different people and
whether they are considered short or tall:

Person Height Short or tall?

1 155cm Short

2 165cm Short

3 175cm Tall

4 185cm Tall

As explained above, the next step involves tuning the parameters of our algorithm. As a
simple algorithm; if the height is more than x, the person is tall. Otherwise, they are short.
Our training algorithms will then look at the data and decide on a good value for x. For the
preceding data, a reasonable value for this threshold would be 170 cm. A person taller than
170 cm is considered tall by the algorithm. Anyone else is considered short by this measure.
This then lets our algorithm classify new data, such as a person with height 167 cm, even
though we may have never seen a person with those measurements before.

In the preceding data, we had an obvious feature type. We wanted to know if people are
short or tall, so we collected their heights. This feature engineering is a critical problem in
data mining. In later chapters, we will discuss methods for choosing good features to collect
in your dataset. Ultimately, this step often requires some expert domain knowledge or at
least some trial and error.

In this book, we will introduce data mining through Python. In some cases, we choose
clarity of code and workflows, rather than the most optimized way to perform every task.
This clarity sometimes involves skipping some details that can improve the algorithm's
speed or effectiveness.

Using Python and the Jupyter Notebook
In this section, we will cover installing Python and the environment that we will use for
most of the book, the Jupyter Notebook. Furthermore, we will install the NumPy module,
which we will use for the first set of examples.

The Jupyter Notebook was, until very recently, called the IPython
Notebook. You'll notice the term in web searches for the project. Jupyter is
the new name, representing a broadening of the project beyond using just
Python.

Getting Started with Data Mining

[10]

Installing Python
The Python programming language is a fantastic, versatile, and an easy to use language.

For this book, we will be using Python 3.5, which is available for your system from the
Python Organization's website . However, I
recommend that you use Anaconda to install Python, which you can download from the
official website at .

There will be two major versions to choose from, Python 3.5 and Python
2.7. Remember to download and install Python 3.5, which is the version
tested throughout this book. Follow the installation instructions on that
website for your system. If you have a strong reason to learn version 2 of
Python, then do so by downloading the Python 2.7 version. Keep in mind
that some code may not work as in the book, and some workarounds may
be needed.

In this book, I assume that you have some knowledge of programming and Python itself.
You do not need to be an expert with Python to complete this book, although a good level
of knowledge will help. I will not be explaining general code structures and syntax in this
book, except where it is different from what is considered normal python coding practice.

If you do not have any experience with programming, I recommend that you pick up the
Learning Python book from Packt Publishing, or the book Dive Into Python, available online
at

The Python organization also maintains a list of two online tutorials for those new to
Python:

For non-programmers who want to learn to program through the Python
language:

For programmers who already know how to program, but need to learn Python
specifically:

Getting Started with Data Mining

[11]

Windows users will need to set an environment variable to use Python from the command
line, where other systems will usually be immediately executable. We set it in the following
steps

First, find where you install Python 3 onto your computer; the default location is1.
.

Next, enter this command into the command line (cmd program): set the2.
environment to .

Remember to change the if your installation of Python is in
a different folder.

Once you have Python running on your system, you should be able to open a command
prompt and can run the following code to be sure it has installed correctly.

Hello, world!

Note that we will be using the dollar sign ($) to denote that a command that you type into
the terminal (also called a shell or on Windows). You do not need to type this character
(or retype anything that already appears on your screen). Just type in the rest of the line and
press Enter.

After you have the above example running, exit the program and move
on to installing a more advanced environment to run Python code, the Jupyter Notebook.

Python 3.5 will include a program called pip, which is a package manager
that helps to install new libraries on your system. You can verify that
is working on your system by running the command,
which tells you which packages you have installed on your system.
Anaconda also installs their package manager, , that you can use. If
unsure, use first, use only if that fails.

Getting Started with Data Mining

[12]

Installing Jupyter Notebook
Jupyter is a platform for Python development that contains some tools and environments
for running Python and has more features than the standard interpreter. It contains the
powerful Jupyter Notebook, which allows you to write programs in a web browser. It also
formats your code, shows output, and allows you to annotate your scripts. It is a great tool
for exploring datasets and we will be using it as our main environment for the code in this
book.

To install the Jupyter Notebook on your computer, you can type the following into a
command line prompt (not into Python):

$ conda install jupyter notebook

You will not need administrator privileges to install this, as Anaconda keeps packages in
the user's directory.

With the Jupyter Notebook installed, you can launch it with the following:

$ jupyter notebook

Running this command will do two things. First, it will create a Jupyter Notebook instance -
the backend - that will run in the command prompt you just used. Second, it will launch
your web browser and connect to this instance, allowing you to create a new notebook. It
will look something like the following screenshot (where you need to replace
with your current working directory):

Getting Started with Data Mining

[13]

To stop the Jupyter Notebook from running, open the command prompt that has the
instance running (the one you used earlier to run the command).
Then, press Ctrl + C and you will be prompted

. Type y and press Enter and the Jupyter Notebook will shut down.

Installing scikit-learn
The package is a machine learning library, written in Python (but also
containing code in other languages). It contains numerous algorithms, datasets, utilities,
and frameworks for performing machine learning. Scikit-learnis built upon the scientific
python stack, including libraries such as the and for speed. Scikit-learn is fast
and scalable in many instances and useful for all skill ranges from beginners to advanced
research users. We will cover more details of scikit-learn in , Classifying with scikit-
learn Estimators.

To install , you can use the utility that comes with Python 3, which
will also install the and libraries if you do not already have them. Open a
terminal with administrator/root privileges and enter the following command:

$ conda install scikit-learn

Users of major Linux distributions such as Ubuntu or Red Hat may wish to install the
official package from their package manager.

Not all distributions have the latest versions of scikit-learn, so check the
version before installing it. The minimum version needed for this book is
0.14. My recommendation for this book is to use Anaconda to manage this
for you, rather than installing using your system's package manager.

Those wishing to install the latest version by compiling the source, or view more detailed
installation instructions, can go to and
refer the official documentation on installing scikit-learn.

Getting Started with Data Mining

[14]

A simple affinity analysis example
In this section, we jump into our first example. A common use case for data mining is to
improve sales, by asking a customer who is buying a product if he/she would like another
similar product as well. You can perform this analysis through affinity analysis, which is
the study of when things exist together, namely. correlate to each other.

To repeat the now-infamous phrase taught in statistics classes, correlation is not causation.
This phrase means that the results from affinity analysis cannot give a cause. In our next
example, we perform affinity analysis on product purchases. The results indicate that the
products are purchased together, but not that buying one product causes the purchase of
the other. The distinction is important, critically so when determining how to use the results
to affect a business process, for instance.

What is affinity analysis?
Affinity analysis is a type of data mining that gives similarity between samples (objects).
This could be the similarity between the following:

Users on a website, to provide varied services or targeted advertising
Items to sell to those users, to provide recommended movies or products
Human genes, to find people that share the same ancestors

We can measure affinity in several ways. For instance, we can record how frequently two
products are purchased together. We can also record the accuracy of the statement when a
person buys object 1 and when they buy object 2. Other ways to measure affinity include
computing the similarity between samples, which we will cover in later chapters.

Product recommendations
One of the issues with moving a traditional business online, such as commerce, is that tasks
that used to be done by humans need to be automated for the online business to scale and
compete with existing automated businesses. One example of this is up-selling, or selling an
extra item to a customer who is already buying. Automated product recommendations
through data mining are one of the driving forces behind the e-commerce revolution that is
turning billions of dollars per year into revenue.

Getting Started with Data Mining

[15]

In this example, we are going to focus on a basic product recommendation service. We
design this based on the following idea: when two items are historically purchased
together, they are more likely to be purchased together in the future. This sort of thinking is
behind many product recommendation services, in both online and offline businesses.

A very simple algorithm for this type of product recommendation algorithm is to simply
find any historical case where a user has brought an item and to recommend other items
that the historical user brought. In practice, simple algorithms such as this can do well, at
least better than choosing random items to recommend. However, they can be improved
upon significantly, which is where data mining comes in.

To simplify the coding, we will consider only two items at a time. As an example, people
may buy bread and milk at the same time at the supermarket. In this early example, we
wish to find simple rules of the form:

If a person buys product X, then they are likely to purchase product Y

More complex rules involving multiple items will not be covered such as people buying
sausages and burgers being more likely to buy tomato sauce.

Loading the dataset with NumPy
The dataset can be downloaded from the code package supplied with the book, or from the
official GitHub repository at:

Download this file and save it on your computer, noting the path to the dataset. It is easiest
to put it in the directory you'll run your code from, but we can load the dataset from
anywhere on your computer.

For this example, I recommend that you create a new folder on your computer to store your
dataset and code. From here, open your Jupyter Notebook, navigate to this folder, and
create a new notebook.

The dataset we are going to use for this example is a NumPy two-dimensional array, which
is a format that underlies most of the examples in the rest of the book. The array looks like a
table, with rows representing different samples and columns representing different
features.

Getting Started with Data Mining

[16]

The cells represent the value of a specific feature of a specific sample. To illustrate, we can
load the dataset with the following code:

Enter the previous code into the first cell of your (Jupyter) Notebook. You can then run the
code by pressing Shift + Enter (which will also add a new cell for the next section of code).
After the code is run, the square brackets to the left-hand side of the first cell will be
assigned an incrementing number, letting you know that this cell has completed. The first
cell should look like the following:

For code that will take more time to run, an asterisk will be placed here to
denote that this code is either running or scheduled to run. This asterisk
will be replaced by a number when the code has completed running
(including if the code completes because it failed).

Getting Started with Data Mining

[17]

This dataset has 100 samples and five features, which we will need to know for the later
code. Let's extract those values using the following code:

If you choose to store the dataset somewhere other than the directory your Jupyter
Notebooks are in, you will need to change the value to the new
location.

Next, we can show some of the rows of the dataset to get an understanding of the data.
Enter the following line of code into the next cell and run it, to print the first five lines of the
dataset:

The result will show you which items were bought in the first five transactions listed:

Downloading the example code
You can download the example code files from your account at
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you could visit and register to have the files
e-mailed directly to you. I've also setup a GitHub repository that contains a live version of
the code, along with new fixes, updates and so on. You can retrieve the code and datasets at
the repository here:

You can read the dataset can by looking at each row (horizontal line) at a time. The first row
 shows the items purchased in the first transaction. Each column

(vertical row) represents each of the items. They are bread, milk, cheese, apples, and
bananas, respectively. Therefore, in the first transaction, the person bought cheese, apples,
and bananas, but not bread or milk. Add the following line in a new cell to allow us to turn
these feature numbers into actual words:

Getting Started with Data Mining

[18]

Each of these features contains binary values, stating only whether the items were
purchased and not how many of them were purchased. A1 indicates that at least 1 item was
bought of this type, while a 0 indicates that absolutely none of that item was purchased. For
a real world dataset, using exact figures or a larger threshold would be required.

Implementing a simple ranking of rules
We wish to find rules of the type If a person buys product X, then they are likely to purchase
product Y. We can quite easily create a list of all the rules in our dataset by simply finding all
occasions when two products are purchased together. However, we then need a way to
determine good rules from bad ones allowing us to choose specific products to recommend.

We can evaluate rules of this type in many ways, on which we will focus on two: support
and confidence.

Support is the number of times that a rule occurs in a dataset, which is computed by simply
counting the number of samples for which the rule is valid. It can sometimes be normalized
by dividing by the total number of times the premise of the rule is valid, but we will simply
count the total for this implementation.

The premise is the requirements for a rule to be considered active. The
conclusion is the output of the rule. For the example if a person buys an
apple, they also buy a banana, the rule is only valid if the premise happens - a
person buys an apple. The rule's conclusion then states that the person will
buy a banana.

While the support measures how often a rule exists, confidence measures how accurate they
are when they can be used. You can compute this by determining the percentage of times
the rule applies when the premise applies. We first count how many times a rule applies to
our data and divide it by the number of samples where the premise (the statement)
occurs.

As an example, we will compute the support and confidence for the rule if a person buys
apples, they also buy bananas.

As the following example shows, we can tell whether someone bought apples in a
transaction, by checking the value of , where we assign a sample to a row of our
matrix:

Getting Started with Data Mining

[19]

Similarly, we can check if bananas were bought in a transaction by seeing if the value of
 is equal to 1 (and so on). We can now compute the number of times our rule

exists in our dataset and, from that, the confidence and support.

Now we need to compute these statistics for all rules in our database. We will do this by
creating a dictionary for both valid rules and invalid rules. The key to this dictionary will be a
tuple (premise and conclusion). We will store the indices, rather than the actual feature
names. Therefore, we would store (3 and 4) to signify the previous rule If a person buys
apples, they will also buy bananas. If the premise and conclusion are given, the rule is
considered valid. While if the premise is given but the conclusion is not, the rule is
considered invalid for that sample.

The following steps will help us to compute the confidence and support for all possible
rules:

We first set up some dictionaries to store the results. We will use 1.
for this, which sets a default value if a key is accessed that doesn't yet exist. We
record the number of valid rules, invalid rules, and occurrences of each premise:

Next, we compute these values in a large loop. We iterate over each sample in the2.
dataset and then loop over each feature as a premise. When again loop over each
feature as a possible conclusion, mapping the relationship premise to conclusion.
If the sample contains a person who bought the premise and the conclusion, we
record this in . If they did not purchase the conclusion product, we
record this in .
For sample in X:3.

Getting Started with Data Mining

[20]

If the premise is valid for this sample (it has a value of 1), then we record this and check
each conclusion of our rule. We skip over any conclusion that is the same as the premise-
this would give us rules such as: if a person buys Apples, then they buy Apples, which
obviously doesn't help us much.

We have now completed computing the necessary statistics and can now compute the
support and confidence for each rule. As before, the support is simply our
value:

We can compute the confidence in the same way, but we must loop over each rule to
compute this:

We now have a dictionary with the support and confidence for each rule. We can create a
function that will print out the rules in a readable format. The signature of the rule takes the
premise and conclusion indices, the support and confidence dictionaries we just computed,
and the features array that tells us what the mean. Then we print out the

 and of this rule:

We can test the code by calling it in the following way-feel free to experiment with different
premises and conclusions:

Getting Started with Data Mining

[21]

Ranking to find the best rules
Now that we can compute the support and confidence of all rules, we want to be able to
find the best rules. To do this, we perform a ranking and print the ones with the highest
values. We can do this for both the support and confidence values.

To find the rules with the highest support, we first sort the support dictionary. Dictionaries
do not support ordering by default; the function gives us a list containing the data
in the dictionary. We can sort this list using the class as our key, which allows
for the sorting of nested lists such as this one. Using allows us to sort
based on the values. gives us the highest values first:

We can then print out the top five rules:

The result will look like the following:

Rule #1
Rule: If a person buys bananas they will also buy milk
 - Support: 27
 - Confidence: 0.474
Rule #2
Rule: If a person buys milk they will also buy bananas
 - Support: 27
 - Confidence: 0.519
Rule #3
Rule: If a person buys bananas they will also buy apples
 - Support: 27
 - Confidence: 0.474
Rule #4

Getting Started with Data Mining

[22]

Rule: If a person buys apples they will also buy bananas
 - Support: 27
 - Confidence: 0.628
Rule #5
Rule: If a person buys apples they will also buy cheese
 - Support: 22
 - Confidence: 0.512

Similarly, we can print the top rules based on confidence. First, compute the sorted
confidence list and then print them out using the same method as before.

Two rules are near the top of both lists. The first is If a person buys apples, they will also buy
cheese, and the second is If a person buys cheese, they will also buy bananas. A store manager can
use rules like these to organize their store. For example, if apples are on sale this week, put
a display of cheeses nearby. Similarly, it would make little sense to put both bananas on sale
at the same time as cheese, as nearly 66 percent of people buying cheese will probably buy
bananas -our sale won't increase banana purchases all that much.

Jupyter Notebook will display graphs inline, right in the notebook.
Sometimes, however, this is not always configured by default. To
configure Jupyter Notebook to display graphs inline, use the following
line of code:

We can visualize the results using a library called .

We are going to start with a simple line plot showing the confidence values of the rules, in
order of confidence. makes this easy - we just pass in the numbers, and it will
draw up a simple but effective plot:

Getting Started with Data Mining

[23]

Using the previous graph, we can see that the first five rules have decent confidence, but the
efficacy drops quite quickly after that. Using this information, we might decide to use just
the first five rules to drive business decisions. Ultimately with exploration techniques like
this, the result is up to the user.

Data mining has great exploratory power in examples like this. A person can use data
mining techniques to explore relationships within their datasets to find new insights. In the
next section, we will use data mining for a different purpose: prediction and classification.

A simple classification example
In the affinity analysis example, we looked for correlations between different variables in
our dataset. In classification, we have a single variable that we are interested in and that we
call the class (also called the target). In the earlier example, if we were interested in how to
make people buy more apples, we would explore the rules related to apples and use those
to inform our decisions.

Getting Started with Data Mining

[24]

What is classification?
Classification is one of the largest uses of data mining, both in practical use and in research.
As before, we have a set of samples that represents objects or things we are interested in
classifying. We also have a new array, the class values. These class values give us a
categorization of the samples. Some examples are as follows:

Determining the species of a plant by looking at its measurements. The class
value here would be: Which species is this?
Determining if an image contains a dog. The class would be: Is there a dog in this
image?
Determining if a patient has cancer, based on the results of a specific test. The
class would be: Does this patient have cancer?

While many of the examples previous are binary (yes/no) questions, they do not have to be,
as in the case of plant species classification in this section.

The goal of classification applications is to train a model on a set of
samples with known classes and then apply that model to new unseen
samples with unknown classes. For example, we want to train a spam
classifier on my past e-mails, which I have labeled as spam or not spam. I
then want to use that classifier to determine whether my next email is
spam, without me needing to classify it myself.

Loading and preparing the dataset
The dataset we are going to use for this example is the famous Iris database of plant
classification. In this dataset, we have 150 plant samples and four measurements of each:
sepal length, sepal width, petal length, and petal width (all in centimeters). This classic
dataset (first used in 1936!) is one of the classic datasets for data mining. There are three
classes: Iris Setosa, Iris Versicolour, and Iris Virginica. The aim is to determine which type
of plant a sample is, by examining its measurements.

The library contains this dataset built-in, making the loading of the dataset
straightforward:

Getting Started with Data Mining

[25]

You can also to see an outline of the dataset, including some
details about the features.

The features in this dataset are continuous values, meaning they can take any range of
values. Measurements are a good example of this type of feature, where a measurement can
take the value of 1, 1.2, or 1.25 and so on. Another aspect of continuous features is that
feature values that are close to each other indicate similarity. A plant with a sepal length of
1.2 cm is like a plant with a Sepal width of 1.25 cm.

In contrast are categorical features. These features, while often represented as numbers,
cannot be compared in the same way. In the Iris dataset, the class values are an example of a
categorical feature. The class 0 represents Iris Setosa; class 1 represents Iris Versicolour, and
class 2 represents Iris Virginica. The numbering doesn't mean that Iris Setosa is more similar
to Iris Versicolour than it is to Iris Virginica-despite the class value being more similar. The
numbers here represent categories. All we can say is whether categories are the same or
different.

There are other types of features too, which we will cover in later chapters. These include
pixel intensity, word frequency and n-gram analysis.

While the features in this dataset are continuous, the algorithm we will use in this example
requires categorical features. Turning a continuous feature into a categorical feature is a
process called discretization.

A simple discretization algorithm is to choose some threshold, and any values below this
threshold are given a value 0. Meanwhile, any above this are given the value 1. For our
threshold, we will compute the mean (average) value for that feature. To start with, we
compute the mean for each feature:

The result from this code will be an array of length 4, which is the number of features we
have. The first value is the mean of the values for the first feature and so on. Next, we use
this to transform our dataset from one with continuous features to one with discrete
categorical features:

We will use this new dataset (for X discretized) for our training and testing, rather than
the original dataset (X).

Getting Started with Data Mining

[26]

Implementing the OneR algorithm
OneR is a simple algorithm that simply predicts the class of a sample by finding the most
frequent class for the feature values. OneR is shorthand for One Rule, indicating we only
use a single rule for this classification by choosing the feature with the best performance.
While some of the later algorithms are significantly more complex, this simple algorithm
has been shown to have good performance in some real-world datasets.

The algorithm starts by iterating over every value of every feature. For that value, count the
number of samples from each class that has that feature value. Record the most frequent
class of the feature value, and the error of that prediction.

For example, if a feature has two values, 0 and 1, we first check all samples that have the
value 0. For that value, we may have 20 in Class A, 60 in Class B, and a further 20 in Class C.
The most frequent class for this value is B, and there are 40 instances that have different
classes. The prediction for this feature value is B with an error of 40, as there are 40 samples
that have a different class from the prediction. We then do the same procedure for the value
1 for this feature, and then for all other feature value combinations.

Once these combinations are computed, we compute the error for each feature by summing
up the errors for all values for that feature. The feature with the lowest total error is chosen
as the One Rule and then used to classify other instances.

In code, we will first create a function that computes the class prediction and error for a
specific feature value. We have two necessary imports, and ,
that we used in earlier code:

Next, we create the function definition, which needs the dataset, classes, the index of the
feature we are interested in, and the value we are computing. It loops over each sample,
and counts the number of time each feature value corresponds to a specific class. We then
choose the most frequent class for the current feature/value pair:

Getting Started with Data Mining

[27]

As a final step, we also compute the error of this rule. In the algorithm, any sample
with this feature value would be predicted as being the most frequent class. Therefore, we
compute the error by summing up the counts for the other classes (not the most frequent).
These represent training samples that result in error or an incorrect classification.

With this function, we can now compute the error for an entire feature by looping over all
the values for that feature, summing the errors, and recording the predicted classes for each
value.

The function needs the dataset, classes, and feature index we are interested in. It then
iterates through the different values and finds the most accurate feature value to use for this
specific feature, as the rule in :

Let's have a look at this function in a little more detail.

Getting Started with Data Mining

[28]

After some initial tests, we then find all the unique values that the given feature takes. The
indexing in the next line looks at the whole column for the given feature and returns it as an
array. We then use the set function to find only the unique values:

Next, we create our dictionary that will store the predictors. This dictionary will have
feature values as the keys and classification as the value. An entry with key 1.5 and value 2
would mean that, when the feature has a value set to 1.5, classify it as belonging to class 2.
We also create a list storing the errors for each feature value:

As the main section of this function, we iterate over all the unique values for this feature
and use our previously defined function to find the most frequent
class and the error for a given feature value. We store the results as outlined earlier:

Finally, we compute the total errors of this rule and return the predictors along with this
value:

Testing the algorithm
When we evaluated the affinity analysis algorithm of the earlier section, our aim was to
explore the current dataset. With this classification, our problem is different. We want to
build a model that will allow us to classify previously unseen samples by comparing them
to what we know about the problem.

For this reason, we split our machine-learning workflow into two stages: training and
testing. In training, we take a portion of the dataset and create our model. In testing, we
apply that model and evaluate how effectively it worked on the dataset. As our goal is to
create a model that can classify previously unseen samples, we cannot use our testing data
for training the model. If we do, we run the risk of overfitting.

Getting Started with Data Mining

[29]

Overfitting is the problem of creating a model that classifies our training dataset very well
but performs poorly on new samples. The solution is quite simple: never use training data
to test your algorithm. This simple rule has some complex variants, which we will cover in
later chapters; but, for now, we can evaluate our implementation by simply splitting
our dataset into two small datasets: a training one and a testing one. This workflow is given
in this section.

The library contains a function to split data into training and testing
components:

This function will split the dataset into two sub-datasets, per a given ratio (which by default
uses 25 percent of the dataset for testing). It does this randomly, which improves the
confidence that the algorithm will perform as expected in real world environments (where
we expect data to come in from a random distribution):

We now have two smaller datasets: contains our data for training and
contains our data for testing. and give the corresponding class values for
these datasets.

We also specify a . Setting the random state will give the same split every
time the same value is entered. It will look random, but the algorithm used is deterministic,
and the output will be consistent. For this book, I recommend setting the random state to
the same value that I do, as it will give you the same results that I get, allowing you to
verify your results. To get truly random results that change every time you run it, set

 to .

Next, we compute the predictors for all the features for our dataset. Remember to only use
the training data for this process. We iterate over all the features in the dataset and use our
previously defined functions to train the predictors and compute the errors:

Getting Started with Data Mining

[30]

Next, we find the best feature to use as our One Rule, by finding the feature with the lowest
error:

We then create our by storing the predictors for the best feature:

Our model is a dictionary that tells us which feature to use for our One Rule and the
predictions that are made based on the values it has. Given this model, we can predict the
class of a previously unseen sample by finding the value of the specific feature and using
the appropriate predictor. The following code does this for a given sample:

Often we want to predict several new samples at one time, which we can do using the
following function. It simply uses the above code, but iterate over all the samples in a
dataset, obtaining the prediction for each sample:

For our dataset, we get the predictions by calling the following function:

We can then compute the accuracy of this by comparing it to the known classes:

This algorithm gives an accuracy of 65.8 percent, which is not bad for a single rule!

Getting Started with Data Mining

[31]

Summary
In this chapter, we introduced data mining using Python. If you could run the code in this
section (note that the full code is available in the supplied code package), then your
computer is set up for much of the rest of the book. Other Python libraries will be
introduced in later chapters to perform more specialized tasks.

We used the Jupyter Notebook to run our code, which allows us to immediately view the
results of a small section of the code. Jupyter Notebook is a useful tool that will be used
throughout the book.

We introduced a simple affinity analysis, finding products that are purchased together. This
type of exploratory analysis gives an insight into a business process, an environment, or a
scenario. The information from these types of analysis can assist in business processes, find
the next big medical breakthrough, or create the next artificial intelligence.

Also, in this chapter, there was a simple classification example using the algorithm.
This simple algorithm simply finds the best feature and predicts the class that most
frequently had this value in the training dataset.

To expand on the outcomes of this chapter, think about how you would implement a
variant of that can take multiple feature/value pairs into consideration. Take a shot at
implementing your new algorithm and evaluating it. Remember to test your algorithm on a
separate dataset to the training data. Otherwise, you run the risk of over fitting your data.

Over the next few chapters, we will expand on the concepts of classification and affinity
analysis. We will also introduce classifiers in the scikit-learn package and use them to do
our machine learning, rather than writing the algorithms ourselves.

22
Classifying with scikit-learn

Estimators
The scikit-learn library is a collection of data mining algorithms, written in Python and
using a. This library allows users to easily try different algorithms as well as utilize
standard tools for doing effective testing and parameter searching. There are many
algorithms and utilities in scikit-learn, including many of the commonly used algorithms in
modern machine learning.

In this chapter, we focus on setting up a good framework for running data mining
procedures. We will use this framework in later chapters, which focus on applications and
techniques to use in those situations.

The key concepts introduced in this chapter are as follows:

Estimators: This is to perform classification, clustering, and regression
Transformers: This is to perform pre-processing and data alterations
Pipelines: This is to put together your workflow into a replicable format

scikit-learn estimators
Estimators that allows for the standardized implementation and testing of algorithms a
common, lightweight interface for classifiers to follow. By using this interface, we can apply
these tools to arbitrary classifiers, without needing to worry about how the algorithms
work.

Classifying with scikit-learn Estimators

[33]

Estimators must have the following two important functions:

: This function performs the training of the algorithm - setting the values of
internal parameters. The takes two inputs, the training sample dataset and
the corresponding classes for those samples.

: This the class of the testing samples that we provide as the only
input. This function returns a array with the predictions of each input
testing sample.

Most scikit-learn estimators use arrays or a related format for input and output.
However this is by convention and not required to use the interface.

There are many estimators implemented in scikit-learn and more in other open source
projects that use the same interface. These (SVM), random forests. We will use many
of these algorithms in later chapters. In this chapter, we will use the nearest neighbor
algorithm.

For this chapter, you will need to install a new library called .
The easiest way to install it is to use , as you did in , Getting
Started with Data Mining, to install scikit-learn:
$pip3 install matplotlib

If you have , seek the official installation instructions at:

Nearest neighbors
The Nearest neighbors algorithm is our new sample. We take the most similar samples
and predict the same class that most of these nearby samples have. This vote is often simply
a simple count,although more complicated methods do exist such as weighted voting.

As an example in the below diagram, we wish to predict the class of the triangle, based on
which class it is more like (represented here by having similar objects closer together). We
seek the three nearest neighbors, which are the two diamonds and one square within the
drawn circle. There are more diamonds than circles, and the predicted class for the triangle
is, therefore, a diamond:

Classifying with scikit-learn Estimators

[34]

Nearest neighbors are used for nearly any dataset - however, it can be computationally
expensive to compute the distance between all pairs of samples. For example, if there are
ten samples in the dataset, there are 45 unique distances to compute. However, if there are
1000 samples, there are nearly 500,000! Various methods exist for improving this speed,
such as the use of tree structures for distance computation. Some of these algorithms can be
quite complex, but thankfully a version is implemented in scikit-learn already, enabling us
to classify on larger datasets. As these tree structures are the default in scikit-learn, we do
not need to configure anything to use it.

Nearest neighbors can do poorly in categorical-based datasets, with categorical features,
and another algorithm should be used for these instead. Nearest Neighbor's issue is due to
the difficulty in comparing differences in categorical values, something better left to an
algorithm that gives weight to each feature's importance. Comparing categorical features
can be done with some distance metrics or pre-processing steps such as one hot encoding
that we use in later chapters. Choosing the correct algorithm for the task is one of the
difficult issues in data mining, often it can be easiest to test a set of algorithms and see
which performs best on your task.

Distance metrics
A key underlying concept in data mining is that of distance. If we have two samples, we
need to answer questions such as are these two samples more similar than the other
two? Answering questions like these is important to the outcome of the data mining
exercise.

The most common use is Euclidean distance, which is the real-world distance between two
objects. If you were to plot the points on a graph and measure the distance with a ruler, the
result would be the Euclidean distance.

Classifying with scikit-learn Estimators

[35]

A little more formally, the Euclidean distances between points a and b is
the square root of the sum of the squared distances for each feature.

Euclidean distance is intuitive but provides poor accuracy if some features have larger
values than a value of 0, known as a sparse matrix.

There are other distance metrics in use; two commonly employed ones are the Manhattan
and Cosine distance.

The Manhattan distance is the sum of the absolute differences in each
feature (with no use of square distances).

Intuitively we can imagine Manhattan distance of as the number of moves a Rook piece
(also called a Castle) in if it were limited to moving one square at a time. While the
Manhattan distance does suffer if some features have larger values than others, the effect is
not as dramatic as in the case of Euclidean points if it were limited to moving one square at
a time. While the Manhattan distance does suffer if some features have larger values than
others, the effect is not as dramatic as in the case of Euclidean.

The Cosine distance is better suited to cases where some features are
larger than others and when there are lots of zeros in the dataset.

Intuitively, we draw a line from the origin to each of the samples and measure the angle
between those lines. We can observe the differences between the algorithms in the
following diagram:

Classifying with scikit-learn Estimators

[36]

In this example, each of the gray circles is exactly the same distance from the white circle. In
(a), the distances are Euclidean, and therefore, similar distances fit around a circle. This
distance can be measured using a ruler. In (b), the distances are Manhattan, also called City
Block. We compute the distance by moving across rows and columns, like how a Rook
(Castle) in Chess moves. Finally, in (c), we have the Cosine distance that is measured by
computing the angle between the lines drawn from the sample to the vector and ignore the
actual length of the line.

The distance metric chosen can have a large impact on the final
performance.

For example, if you have many features, the Euclidean distance between random samples
converges (due to the famous curse of dimensionality). Euclidean distances in high dimension
have a hard time comparing samples, as the distances are always nearly the same!

Manhattan distance can be more stable in these circumstances, but if some features have
very large values, this can overrule lots similarity in other features. For example, if feature A
has values between 1 and 2, and another feature B has values between 1000 and 2000, in
such a case feature A is unlikely to have any impact on the result. This problem can be
addressed through normalization, which makes Manhattan (and Euclidean) distance more
reliable with different features, which we will see later in this chapter.

Finally, Cosine distance is a good metric for comparing items with many features, but it
discards some information about the length of the vector, which is useful in some
applications. We would often use Cosine distance in text mining due to the large number of
features inherent in text mining (see , Social Media Insight Using Naive Bayes).

Ultimately, either a theoretical approach is needed to determine which
distance method is needed, or an empirical evaluation is needed to see
which performed more effectively. I prefer the empirical approach, but
either approach can yield good results.

For this chapter, we will stay with Euclidean distance, using other metrics in later chapters.
If you'd like to experiment, then try setting the metric to Manhattan and see how that affects
the results.

Classifying with scikit-learn Estimators

[37]

Loading the dataset
The dataset , which high-frequency antennas. The aim of the antennas is to
determine whether there is a structure in the ionosphere and a region in the upper
atmosphere. We consider readings with a structure to be good, while those that do not have
structure are deemed bad. The aim of this application is to build a data mining classifier
that can determine whether an image is good or bad.

You can download this dataset for different data mining applications. Go to
 and click on Data Folder. Download the

 and files to a folder on your computer. For this
example, I'll assume that you have put the dataset in a directory called in your
folder. You can place the data in another folder, just be sure to update your data folder
(here, and in all other chapters).

The location of your home folder depends on your operating system. For
Windows, it is usually at and . For Mac
or Linux machines, it is usually at . You can get your
home folder by running this python code inside a Jupyter Notebook:

Classifying with scikit-learn Estimators

[38]

For each row in the dataset, there are 35 values. The first 34 are measurements taken from
the 17 antennas (two values for each antenna). The last is either 'g' or 'b'; that stands for
good and bad, respectively.

Start the Jupyter Notebook server and create a new notebook called Ionosphere Nearest
Neighbors. To start with, we load up the and libraries that we will need for our
code, and set the data's filename that we will need for our code.

We then create the and arrays to store the dataset in. The sizes of these arrays are
known from the dataset. Don't worry if you don't know the size of future datasets - we will
use other methods to load the dataset in future chapters and you won't need to know this
size beforehand:

The dataset is in a Comma-Separated Values (CSV) format, which is a commonly used
format for datasets. We are going to use the module to load this file. Import it and set
up a reader object, then loop through the file, setting the appropriate row in and class
value in for every line in our dataset:

We now have a dataset of samples and features in as well as the corresponding classes in
, as we did in the classification example in , Getting Started with Data Mining.

Classifying with scikit-learn Estimators

[39]

To begin with, try applying the OneR algorithm from , Getting Started with Data
Mining to this dataset. It won't work very well, as the information in this dataset is spread
out within the correlations of certain features. OneR is only interested in the values of a
single feature and cannot pick up information in more complex datasets very well. Other
algorithms, including Nearest Neighbor, merge information from multiple features, making
them applicable in more scenarios. The downside is that they are often more
computationally expensive to compute.

Moving towards a standard workflow
Estimators scikit-learn have two and . We train the algorithm using the

 method on our testing set. We evaluate it using the method on our
testing set.

First, we need to create these training and testing sets. As before, import and run1.
the function:

Then, we import the class and create an instance for it. We2.
leave the parameters as defaults for now and will test other values later in this
chapter. By default, the algorithm will choose the five nearest neighbors to
predict the class of a testing sample:

After creating our , we must then fit it on our training dataset. For the3.
 class, this training step simply records our dataset, allowing

us to find the nearest neighbor for a new data point, by comparing that point to
the training dataset:

We then train the algorithm with our test set and evaluate with our testing set:4.

Classifying with scikit-learn Estimators

[40]

This model scores 86.4 percent accuracy, which is impressive for a default algorithm and
just a few lines of code! Most scikit-learn default parameters are chosen deliberately to work
well with a range of datasets. However, you should always aim to choose parameters based
on knowledge of the application experiment. We will use strategies for doing this
parameter search in later chapters.

Running the algorithm
The previous results are quite good, based on our testing set of data, based on the testing
set. However, what happens if we get lucky and choose an easy testing set? Alternatively,
what if it was particularly troublesome? We can discard a good model due to poor results
resulting from such an unlucky split of our data.

The cross-fold validation framework is a way to address the problem of choosing a single
testing set and is a standard best-practice methodology in data mining. The process works by
doing many experiments with different training and testing splits, but using each sample in
a testing set only once. The procedure is as follows:

Split the entire dataset into several sections called folds.1.
For each fold in the data, execute the following steps:2.

Set that fold aside as the current testing set1.
Train the algorithm on the remaining folds2.
Evaluate on the current testing set3.

Report on all the evaluation scores, including the average score.3.

In this process, each sample is used in the testing set only once, reducing
(but not eliminating) the likelihood of choosing lucky testing sets.

Throughout this book, the code examples build upon each other within a
chapter. Each chapter's code should be entered into the same Jupyter
Notebook unless otherwise specified in-text.

The scikit-learn library contains a few cross-fold validation methods. A function is
given that performs the preceding procedure. We can import it now in our Jupyter
Notebook:

Classifying with scikit-learn Estimators

[41]

By uses a specific methodology called Stratified
K-Fold to create folds that have approximately the same proportion of
classes in each fold, again reducing the likelihood of choosing poor folds.
Stratified K-Fold is a great default -we won't mess with it right now.

Next, we use this new function to evaluate our model using cross-fold validation:

Our new code returns a slightly more modest result of 82.3 percent, but it is still quite good
considering we have not yet tried setting better parameters. In the next section, we will see
how we would go about changing the parameters to achieve a better outcome.

It is quite natural for variation in results when performing data mining, and attempting to
repeat experiments. This is due to variations in how the folds are created and randomness
inherent in some classification algorithms. We can deliberately choose to replicate an
experiment exactly by setting the random state (which we will do in later chapters). In
practice, it's a good idea to rerun experiments multiple times to get a sense of the average
result and the spread of the results (the mean and standard deviation) across all
experiments.

Setting parameters
Almost all parameters that the user can set, letting algorithms focus more on the specific
dataset, rather than only being applicable across a small and specific range of problems.
Setting these parameters can be quite difficult, as choosing good parameter values is often
highly reliant on features of the dataset.

The nearest neighbor algorithm has several parameters, but the most important one is that
of the number of nearest neighbors to use when predicting the class of an unseen
attribution. In , this parameter is called . In the following figure, we
show that when this number is too low, a randomly labeled sample can cause an error. In
contrast, when it is too high, the actual nearest neighbors have a lower effect on the result:

Classifying with scikit-learn Estimators

[42]

In figure (a), on the left-hand side, we would usually expect to classify the test sample (the
triangle) as a circle. However, if is 1, the single red diamond in this area
(likely a noisy sample) causes the sample to be predicted as a diamond. In figure (b), on the
right-hand side, we would usually expect to classify the test sample as a diamond.
However, if is 7, the three nearest neighbors (which are all diamonds) are
overridden by a large number of circle samples. Nearest neighbors a difficult problem to
solve, as the parameter can make a huge difference. Luckily, most of the time the specific
parameter value does not greatly affect the end result, and the standard values (usually 5 or
10) are often near enough.

With that in mind, we can test out a range of values, and investigate the impact that this
parameter has on performance. If we want to test a number of values for the
parameter, for example, each of the values from 1 to 20, we can rerun the experiment many
times by setting and observing the result. The code below does this, storing
the values in the and variables.

We can then plot the relationship between the value of and the accuracy.
First, we tell the Jupyter Notebook that we want to show plots in the notebook
itself:

Classifying with scikit-learn Estimators

[43]

We then import from the library and plot the parameter values
alongside average scores:

While there is a lot of variance, the plot shows a decreasing trend as the number of
neighbors increases. With regard to the variance, you can expect large amounts of variance
whenever you do evaluations of this nature. To compensate, update the code to run 100
tests, per value of .

Preprocessing
When taking measurements of real-world objects, we can often get features in different
ranges. For instance, if we measure the qualities of an animal, we might have several
features, as follows:

Number of legs: This is between the range of 0-8 for most animals, while some
have more! more! more!
Weight: This is between the ranges of only a few micrograms, all the way to a
blue whale with a weight of 190,000 kilograms!

Classifying with scikit-learn Estimators

[44]

Number of hearts: This can be between zero to five, in the case of the earthworm.

For a mathematical-based algorithm to compare each of these features, the differences in the
scale, range, and units can be difficult to interpret. If we used the above features in many
algorithms, the weight would probably be the most influential feature due to only the larger
numbers and not anything to do with the actual effectiveness of the feature.

One of the possible strategies normalizes the features so that they all have the same range, or
the values are turned into categories like small, medium and large. Suddenly, the large
differences in the types of features have less of an impact on the algorithm and can lead to
large increases in the accuracy.

Pre-processing can also be used to choose only the more effective features, create new
features, and so on. Pre-processing in scikit-learn is done through objects,
which take a dataset in one form and return an altered dataset after some transformation of
the data. These don't have to be numerical, as Transformers are also used to extract
features-however, in this section, we will stick with pre-processing.

We can show an example of the problem by breaking the dataset. While this is
only an example, many real-world datasets have problems of this form.

First, we create a copy of the array so that we do not alter the original dataset:1.

Next, we break the dataset by dividing every second feature by :2.

In theory, this should not have a great effect on the result. After all, the values of these
features are still relatively the same. The major issue is that the scale has changed and the
odd features are now larger than the even features. We can see the effect of this by
computing the accuracy:

Classifying with scikit-learn Estimators

[45]

This testing methodology gives a score of 82.3 percent for the original dataset, which drops
down to 71.5 percent on the broken dataset. We can fix this by scaling all the features to the
range to .

Standard pre-processing
The pre-processing we will perform for this experiment is called feature-based
normalization, which we perform using scikit-learn's class. Continuing with
the Jupyter Notebook from the rest of this chapter, first, we import this class:

This class takes each feature and scales it to the range to . This pre-processor replaces the
minimum value with , the maximum with , and the other values somewhere in between
based on a linear mapping.

To apply our pre-processor, we run the function on it. Transformers often need
to be trained first, in the same way that the classifiers do. We can combine these steps by
running the function instead:

Here, will have the same shape as X. However, each column will have a
maximum of and a minimum of .

There are various other forms of normalizing in this way, which is effective for other
applications and feature types:

Ensure the sum of the values for each sample equals to 1, using

Force each feature to have a zero mean and a variance of 1, using
, which is a commonly used

starting point for normalization
Turn numerical features into binary features, where any value above a threshold
is 1 and any below is 0, using

We will use combinations of these pre-processors in later chapters, along with other types
of object.

Classifying with scikit-learn Estimators

[46]

Pre-processing is a critical step in the data mining pipeline and one that
can mean the difference between a bad and great result.

Putting it all together
We can now create a workflow by combining the code from the previous sections, using the
broken dataset previously calculated:

We now recover our original score of 82.3 percent accuracy. The resulted in
features of the same scale, meaning that no features overpowered others by simply being
bigger values. While the Nearest Neighbor algorithm can be confused with larger features,
some algorithms handle scale differences better. In contrast, some are much worse!

Pipelines
As experiments grow, so does the complexity of the operations. We may split up our
dataset, binarize features, perform feature-based scaling, perform sample-based scaling,
and many more operations.

Keeping track of these operations can get quite confusing and can result in being unable to
replicate the result. Problems include forgetting a step, incorrectly applying a
transformation, or adding a transformation that wasn't needed.

Another issue is the order of the code. In the previous section, we created our
 dataset and then created a new estimator for the cross validation.If we had

multiple steps, we would need to track these changes to the dataset in code.

Classifying with scikit-learn Estimators

[47]

Pipelines are a construct that addresses these problems (and others, which we will see in the
next chapter). Pipelines store the steps in your data mining workflow. They can take your
raw data in, perform all the necessary transformations, and then create a prediction. This
allows us to use pipelines in functions such as , where they expect an
estimator. First, import the object:

Pipelines take a list of steps as input, representing the chain of the data mining application.
The last step needs to be an Estimator, while all previous steps are Transformers. The input
dataset is altered by each Transformer, with the output of one step being the input of the
next step. Finally, we classify the samples by the last step's estimator. In our pipeline, we
have two steps:

Use to scale the feature values from 0 to 11.
Use as the classification algorithms2.

We then represent each step using a tuple . We can then create our
pipeline:

The key here is the list of tuples. The first tuple is our scaling step and the second tuple is
the predicting step. We give each step a name: the first we call and the second we
call , but you can choose your own names. The second part of the tuple is the
actual or object.

Running this pipeline is now very easy, using the cross-validation code from before:

This gives us the same score as before (82.3 percent), which is expected, as we are running
exactly the same steps, just with an improved interface.

In later chapters, we will use more advanced testing methods and setting up pipelines is a
great way to ensure that the code complexity does not grow unmanageably.

Classifying with scikit-learn Estimators

[48]

Summary
In this chapter, we used several of scikit-learn's methods for building a standard workflow
to run and evaluate data mining models. We introduced the Nearest Neighbors algorithm,
which is implemented in scikit-learn as an estimator. Using this class is quite easy; first, we
call the function on our training data, and second, we use the function to
predict the class of testing samples.

We then looked at pre-processing by fixing poor feature scaling. This was done using a
 object and the class. These functions also have a method

and then a transform, which takes data of one form as an input and returns a transformed
dataset as an output.

To investigate these transformations further, try swapping out the with
some of the other mentioned transformers. Which is the most effective and why would this
be the case?

Other transformers also exist in scikit-learn, which we will use later in this book, such as
PCA. Try some of these out as well, referencing scikit-learn's excellent documentation at

In the next chapter, we will use these concepts in a larger example, predicting the outcome
of sports matches using real-world data.

33
Predicting Sports Winners with

Decision Trees
In this chapter, we will look at predicting the winner of sports matches using a different
type of classification algorithm to the ones we have seen so far: decision trees. These
algorithms have a number of advantages over other algorithms. One of the main
advantages is that they are readable by humans, allowing for their use in human-driven
decision making. In this way, decision trees can be used to learn a procedure, which could
then be given to a human to perform if needed. Another advantage is that they work with a
variety of features, including categorical, which we will see in this chapter.

We will cover the following topics in this chapter:

Using the pandas library for loading and manipulating data
Decision trees for classification
Random forests to improve upon decision trees
Using real-world datasets in data mining
Creating new features and testing them in a robust framework

Loading the dataset
In this chapter, we will look at predicting the winner of games of the National Basketball
Association (NBA). Matches in the NBA are often close and can be decided at the last
minute, making predicting the winner quite difficult. Many sports share this characteristic,
whereby the (generally) better team could be beaten by another team on the right day.

Predicting Sports Winners with Decision Trees

[50]

Various research into predicting the winner suggests that there may be an upper limit to
sports outcome prediction accuracy which, depending on the sport, is between 70 percent
and 80 percent. There is a significant amount of research being performed into sports
prediction, often through data mining or statistics-based methods.

In this chapter, we are going to have a look at an entry level basketball match prediction
algorithm, using decision trees for determining whether a team will win a given match.
Unfortunately, it doesn't quite make as much profit as the models that sports betting
agencies use, which are often a bit more advanced, more complex, and ultimately, more
accurate.

Collecting the data
The data we will be using is the match history data for the NBA for the 2015-2016 season.
The website contains a significant number of resources
and statistics collected from the NBA and other leagues. To download the dataset, perform
the following steps:

Navigate to 1.
 in your web browser.

Click Share & more.2.
Click Get table as CSV (for Excel).3.
Copy the data, including the heading, into a text file named .4.
Repeat this process for the other months, except do not copy the heading.5.

This will give you a CSV file containing the results from each game of this season of the
NBA. Your file should contain 1316 games and a total of 1317 lines in the file, including the
header line.

CSV files are text files where each line contains a new row and each value is separated by a
comma (hence the name). CSV files can be created manually by typing into a text editor and
saving with a extension. They can be opened in any program that can read text files
but can also be opened in Excel as a spreadsheet. Excel (and other spreadsheet programs)
can usually convert a spreadsheet to CSV as well.

We will load the file with the library, which is an incredibly useful library for
manipulating data. Python also contains a built-in library called that supports reading
and writing CSV files. However, we will use pandas, which provides more powerful
functions that we will use later in the chapter for creating new features.

Predicting Sports Winners with Decision Trees

[51]

For this chapter, you will need to install pandas. The easiest way to install
it is to use Anaconda's installer, as you did in , Getting
Started with data mining to install scikit-learn:

If you have difficulty in installing pandas, head to the project's website at
 and read the installation

instructions for your system.

Using pandas to load the dataset
The library is a library for loading, managing, and manipulating data. It handles
data structures behind-the-scenes and supports data analysis functions, such as computing
the mean and grouping data by value.

When doing multiple data mining experiments, you will find that you write many of the
same functions again and again, such as reading files and extracting features. Each time this
reimplementation happens, you run the risk of introducing bugs. Using a high-quality
library such as significantly reduces the amount of work needed to do these
functions, and also gives you more confidence in using well-tested code to underly your
own programs.

Throughout this book, we will be using pandas a lot, introducing use cases as we go and
new functions as needed.

We can load the dataset using the function:

import pandas as pd
data_filename = "basketball.csv"
dataset = pd.read_csv(data_filename)

The result of this is a pandas DataFrame, and it has some useful functions that we will use
later on. Looking at the resulting dataset, we can see some issues. Type the following and
run the code to see the first five rows of the dataset:

Predicting Sports Winners with Decision Trees

[52]

Here's the output:

Just reading the data with no parameters resulted in quite a usable dataset, but it has some
issues which we will address in the next section.

Cleaning up the dataset
After looking at the output, we can see a number of problems:

The date is just a string and not a date object
From visually inspecting the results, the headings aren't complete or correct

These issues come from the data and we could fix this by altering the data itself. However,
in doing this, we could forget the steps we took or misapply them; that is, we can't replicate
our results. As with the previous section where we used pipelines to track the
transformations we made to a dataset, we will use pandas to apply transformations to the
raw data itself.

The function has parameters to fix each of these issues, which we can
specify when loading the file. We can also change the headings after loading the file, as
shown in the following code:

The results have significantly improved, as we can see if we print out the resulting data
frame:

Predicting Sports Winners with Decision Trees

[53]

The output is as follows:

Even in well-compiled data sources such as this one, you need to make some adjustments.
Different systems have different nuances, resulting in data files that are not quite
compatible with each other. When loading a dataset for the first time, always check the data
loaded (even if it's a known format) and also check the data types of the data. In pandas,
this can be done with the following code:

Now that we have our dataset in a consistent format, we can compute a baseline, which is
an easy way to get a good accuracy on a given problem. Any decent data mining solution
should beat this baseline figure.

For a product recommendation system, a good baseline is to
simply recommend the most popular product.
For a classification task, it can be to always predict the most frequent task, or
alternatively applying a very simple classification algorithm like OneR.

For our dataset, each match has two teams: a home team and a visitor team. An obvious
baseline for this task is 50 percent, which is our expected accuracy if we simply guessed a
winner at random. In other words, choosing the predicted winning team randomly will
(over time) result in an accuracy of around 50 percent. With a little domain knowledge,
however, we can use a better baseline for this task, which we will see in the next section.

Predicting Sports Winners with Decision Trees

[54]

Extracting new features
We will now extract some features from this dataset by combining and comparing the
existing data. First, we need to specify our class value, which will give our classification
algorithm something to compare against to see if its prediction is correct or not. This could
be encoded in a number of ways; however, for this application, we will specify our class as
1 if the home team wins and 0 if the visitor team wins. In basketball, the team with the most
points wins. So, while the data set doesn't specify who wins directly, we can easily compute
it.

We can specify the data set by the following:

We then copy those values into a NumPy array to use later for our scikit-learn classifiers.
There is not currently a clean integration between pandas and scikit-learn, but they work
nicely together through the use of NumPy arrays. While we will use pandas to extract
features, we will need to extract the values to use them with scikit-learn:

The preceding array now holds our class values in a format that scikit-learn can read.

By the way, the better baseline figure for sports prediction is to predict the home team in
every game. Home teams are shown to have an advantage in nearly all sports across the
world. How big is this advantage? Let's have a look:

The resulting value, around 0.59, indicates that the home team wins 59 percent of games on
average. This is higher than 50 percent from random chance and is a simple rule that
applies to most sports.

We can also start creating some features to use in our data mining for the input values (the
 array). While sometimes we can just throw the raw data into our classifier, we often need

to derive continuous numerical or categorical features from our data.

For our current dataset, we can't really use the features already present (in their current
form) to do a prediction. We wouldn't know the scores of a game before we would need to
predict the outcome of the game, so we can not use them as features. While this might
sound obvious, it can be easy to miss.

Predicting Sports Winners with Decision Trees

[55]

The first two features we want to create to help us predict which team will win are whether
either of those two teams won their previous game. This would roughly approximate which
team is currently playing well.

We will compute this feature by iterating through the rows in order and recording which
team won. When we get to a new row, we look up whether the team won the last time we
saw them.

We first create a (default) dictionary to store the team's last result:

We then create a new feature on our dataset to store the results of our new features:

The key of this dictionary will be the team and the value will be whether they won their
previous game. We can then iterate over all the rows and update the current row with the
team's last result:

Note that the preceding code relies on our dataset being in chronological order. Our dataset
is in order; however, if you are using a dataset that is not in order, you will need to replace

 with .

Those last two lines in the loop update our dictionary with either a 1 or a 0, depending on
which team won the current game. This information is used for the next game
each team plays.

After the preceding code runs, we will have two new features: and
. Have a look at the dataset using to see an example of

a home team and a visitor team that won their recent game. Have a look at other parts of
the dataset using the panda's indexer:

Predicting Sports Winners with Decision Trees

[56]

Currently, this gives a false value to all teams (including the previous year's champion!)
when they are first seen. We could improve this feature using the previous year's data, but
we will not do that in this chapter.

Decision trees
Decision trees are a class of supervised learning algorithms like a flow
chart that consists of a sequence of nodes, where the values for a sample
are used to make a decision on the next node to go to.

The following example gives a very good idea of how decision trees are a class of
supervised learning algorithms:

As with most classification algorithms, there are two stages to using them:

The first stage is the training stage, where a tree is built using training data.
While the nearest neighbor algorithm from the previous chapter did not have a
training phase, it is needed for decision trees. In this way, the nearest neighbor
algorithm is a lazy learner, only doing any work when it needs to make a
prediction. In contrast, decision trees, like most classification methods, are eager
learners, undertaking work at the training stage and therefore needing to do less
in the predicting stage.

Predicting Sports Winners with Decision Trees

[57]

The second stage is the predicting stage, where the trained tree is used to predict
the classification of new samples. Using the previous example tree, a data point
of would be classed as bad weather.

There are many algorithms for creating decision trees. Many of these
algorithms are iterative. They start at the base node and decide the best
feature to use for the first decision, then go to each node and choose the
next best feature, and so on. This process is stopped at a certain
point when it is decided that nothing more can be gained from extending
the tree further.

The package implements the Classification and Regression Trees (CART)
algorithm as its default dDecision tree class, which can use both categorical and continuous
features.

Parameters in decision trees
One of the most important parameters for a Decision Tree is the stopping criterion. When
the tree building is nearly completed, the final few decisions can often be somewhat
arbitrary and rely on only a small number of samples to make their decision. Using such
specific nodes can result in trees that significantly overfit the training data. Instead, a
stopping criterion can be used to ensure that the Decision Tree does not reach this
exactness.

Instead of using a stopping criterion, the tree could be created in full and then trimmed.
This trimming process removes nodes that do not provide much information to the overall
process. This is known as pruning and results in a model that generally does better on new
datasets because it hasn't overfitted the training data.

The decision tree implementation in scikit-learn provides a method to stop the building of a
tree using the following options:

min_samples_split: This specifies how many samples are needed in order to
create a new node in the Decision Tree
min_samples_leaf: This specifies how many samples must be resulting from a
node for it to stay

The first dictates whether a decision node will be created, while the second dictates whether
a decision node will be kept.

Predicting Sports Winners with Decision Trees

[58]

Another parameter for decision trees is the criterion for creating a decision. Gini impurity
and information gain are two popular options for this parameter:

Gini impurity: This is a measure of how often a decision node would incorrectly
predict a sample's class
Information gain: This uses information-theory-based entropy to indicate how
much extra information is gained by the decision node

These parameter values do approximately the same thing--decide which rule and value to
use to split a node into subnodes. The value itself is simply which metric to use to
determine that split, however this can make a significant impact on the final models.

Using decision trees
We can import the class and create a Decision Tree using
scikit-learn:

We used 14 for our again and will do so for most of the
book. Using the same random seed allows for replication of experiments.
However, with your experiments, you should mix up the random state to
ensure that the algorithm's performance is not tied to the specific value.

We now need to extract the dataset from our pandas data frame in order to use it with our
 classifier. We do this by specifying the columns we wish to use and using

the values parameter of a view of the data frame. The following code creates a dataset using
our last win values for both the home team and the visitor team:

Decision trees are estimators, as introduced in , Classifying using scikit-learn
Estimators, and therefore have and methods. We can also use the

 method to get the average score (as we did previously):

Predicting Sports Winners with Decision Trees

[59]

This scores 59.4 percent: we are better than choosing randomly! However, we aren't beating
our other baseline of just choosing the home team. In fact, we are pretty much exactly the
same. We should be able to do better. Feature engineering is one of the most difficult tasks
in data mining, and choosing good features is key to getting good outcomes—more so than
choosing the right algorithm!

Sports outcome prediction
We may be able to do better by trying other features. We have a method for testing how
accurate our models are. The method allows us to try new features.

There are many possible features we could use, but we will try the following questions:

Which team is considered better generally?
Which team won their last encounter?

We will also try putting the raw teams into the algorithm, to check whether the algorithm
can learn a model that checks how different teams play against each other.

Putting it all together
For the first feature, we will create a feature that tells us if the home team is generally better
than the visitors. To do this, we will load the standings (also called a ladder in some sports)
from the NBA in the previous season. A team will be considered better if it ranked higher in
2015 than the other team.

To obtain the standings data, perform the following steps:

Navigate to 1.
in your web browser.

Select Expanded Standings to get a single list for the entire league.2.
Click on the Export link.3.
Copy the text and save it in a text/CSV file called in your data4.
folder.

Predicting Sports Winners with Decision Trees

[60]

Back in your Jupyter Notebook, enter the following lines into a new cell. You'll need to
ensure that the file was saved into the location pointed to by the data_folder variable. The
code is as follows:

You can view the ladder by just typing standings into a new cell and running
the code:

The output is as follows:

Next, we create a new feature using a similar pattern to the previous feature. We iterate
over the rows, looking up the standings for the home team and visitor team. The code is as
follows:

Next, we use the function to test the result. First, we extract the dataset:

Predicting Sports Winners with Decision Trees

[61]

Then, we create a new and run the evaluation:

This now scores 60.9 percent even better than our previous result, and now better than just
choosing the home team every time. Can we do better?

Next, let's test which of the two teams won their last match against each other. While
rankings can give some hints on who won (the higher ranked team is more likely to win),
sometimes teams play better against other teams. There are many reasons for this--for
example, some teams may have strategies or players that work against specific teams really
well. Following our previous pattern, we create a dictionary to store the winner of the past
game and create a new feature in our data frame. The code is as follows:

This feature works much like our previous rank-based feature. However, instead of looking
up the ranks, this features creates a tuple called , and then stores the previous result
in a dictionary. When those two teams play each other next, it recreates this tuple, and looks
up the previous result. Our code doesn't differentiate between home games and visitor
games, which might be a useful improvement to look at implementing.

Next, we need to evaluate. The process is pretty similar to before, except we add the new
feature into the extracted values:

Predicting Sports Winners with Decision Trees

[62]

This scores 62.2 percent. Our results are getting better and better.

Finally, we will check what happens if we throw a lot of data at the Decision Tree, and see if
it can learn an effective model anyway. We will enter the teams into the tree and check
whether a Decision Tree can learn to incorporate that information.

While decision trees are capable of learning from categorical features, the implementation in
 requires those features to be encoded as numbers and features, instead of

string values. We can use the transformer to convert the string-based team
names into assigned integer values. The code is as follows:

We should use the same transformer for encoding both the home team and visitor teams.
This is so that the same team gets the same integer value as both a home team and visitor
team. While this is not critical to the performance of this application, it is important and
failing to do this may degrade the performance of future models.

These integers can be fed into the Decision Tree, but they will still be interpreted as
continuous features by . For example, teams may be allocated
integers from 0 to 16. The algorithm will see teams 1 and 2 as being similar, while teams 4
and 10 will be very different--but this makes no sense as all. All of the teams are different
from each other--two teams are either the same or they are not!

To fix this inconsistency, we use the transformer to encode these integers
into a number of binary features. Each binary feature will be a single value for the feature.
For example, if the NBA team Chicago Bulls is allocated as integer 7 by the ,
then the seventh feature returned by the will be a 1 if the team is Chicago
Bulls and 0 for all other features/teams. This is done for every possible value, resulting in a
much larger dataset. The code is as follows:

Predicting Sports Winners with Decision Trees

[63]

Next, we run the Decision Tree as before on the new dataset:

This scores an accuracy of 62.8 percent. The score is better still, even though the information
given is just the teams playing. It is possible that the larger number of features were not
handled properly by the decision trees. For this reason, we will try changing the algorithm
and see if that helps. Data mining can be an iterative process of trying new algorithms and
features.

Random forests
A single Decision Tree can learn quite complex functions. However,
decision trees are prone to overfitting--learning rules that work only for
the specific training set and don't generalize well to new data.

One of the ways that we can adjust for this is to limit the number of rules that it learns. For
instance, we could limit the depth of the tree to just three layers. Such a tree will learn the
best rules for splitting the dataset at a global level, but won't learn highly specific rules that
separate the dataset into highly accurate groups. This trade-off results in trees that may
have a good generalization, but an overall slightly poorer performance on the training
dataset.

To compensate for this, we could create many of these limited decision trees and then ask
each to predict the class value. We could take a majority vote and use that answer as our
overall prediction. Random Forests is an algorithm developed from this insight.

There are two problems with the aforementioned procedure. The first problem is that
building decision trees is largely deterministic—using the same input will result in the same
output each time. We only have one training dataset, which means our input (and therefore
the output) will be the same if we try to build multiple trees. We can address this by
choosing a random subsample of our dataset, effectively creating new training sets. This
process is called bagging and it can be very effective in many situations in data mining.

Predicting Sports Winners with Decision Trees

[64]

The second problem we might run into with creating many decision trees from similar data
is that the features that are used for the first few decision nodes in our tree will tend to be
similar. Even if we choose random subsamples of our training data, it is still quite possible
that the decision trees built will be largely the same. To compensate for this, we also choose
a random subset of the features to perform our data splits on.

Then, we have randomly built trees using randomly chosen samples, using (nearly)
randomly chosen features. This is a random forest and, perhaps unintuitively, this
algorithm is very effective for many datasets, with little need to tune many parameters of
the model.

How do ensembles work?
The randomness inherent in random forests may make it seem like we are leaving the
results of the algorithm up to chance. However, we apply the benefits of averaging to nearly
randomly built decision trees, resulting in an algorithm that reduces the variance of the
result.

Variance is the error introduced by variations in the training dataset on
the algorithm. Algorithms with a high variance (such as decision trees) can
be greatly affected by variations to the training dataset. This results in
models that have the problem of overfitting. In contrast, bias is the error
introduced by assumptions in the algorithm rather than anything to do
with the dataset, that is, if we had an algorithm that presumed that all
features would be normally distributed, then our algorithm may have a
high error if the features were not.

Negative impacts from bias can be reduced by analyzing the data to see if the classifier's
data model matches that of the actual data.

To use an extreme example, a classifier that always predicts true, regardless of the input,
has a very high bias. A classifier that always predicts randomly would have a very high
variance. Each classifier has a high degree of error but of a different nature.

By averaging a large number of decision trees, this variance is greatly reduced. This results,
at least normally, in a model with a higher overall accuracy and better predictive power.
The trade-offs are an increase in time and an increase in the bias of the algorithm.

Predicting Sports Winners with Decision Trees

[65]

In general, ensembles work on the assumption that errors in prediction are effectively
random and that those errors are quite different from one classifier to another. By averaging
the results across many models, these random errors are canceled out—leaving the true
prediction. We will see many more ensembles in action throughout the rest of the book.

Setting parameters in Random Forests
The Random Forest implementation in scikit-learn is called ,
and it has a number of parameters. As Random Forests use many instances of

, they share many of the same parameters such as the
 (Gini Impurity or Entropy/information gain), , and

.

There are some new parameters that are used in the ensemble process:

: This dictates how many decision trees should be built. A higher
value will take longer to run, but will (probably) result in a higher accuracy.

: If true, the method is tested using samples that aren't in the random
subsamples chosen for training the decision trees.

: This specifies the number of cores to use when training the decision trees
in parallel.

The package uses a library called Joblib for inbuilt parallelization. This
parameter dictates how many cores to use. By default, only a single core is used--if you
have more cores, you can increase this, or set it to -1 to use all cores.

Applying random forests
Random forests in scikit-learn use the Estimator interface, allowing us to use almost the
exact same code as before to do cross-fold validation:

This results in an immediate benefit of 65.3 percent, up by 2.5 points by just swapping the
classifier.

Predicting Sports Winners with Decision Trees

[66]

Random forests, using subsets of the features, should be able to learn more effectively with
more features than normal decision trees. We can test this by throwing more features at the
algorithm and seeing how it goes:

This results in 63.3 percent—a drop in performance! One cause is the randomness inherent
in random forests only chose some features to use rather than others. Further, there are
many more features in than in , and having the extra features
results in less relevant information being used. That said, don't get too excited by small
changes in percentages, either up or down. Changing the random state value will have
more of an impact on the accuracy than the slight difference between these feature sets that
we just observed. Instead, you should run many tests with different random states, to get a
good sense of the mean and spread of accuracy values.

We can also try some other parameters using the class, as we introduced in
, Classifying using scikit-learn Estimators:

This has a much better accuracy of 67.4 percent!

If we wanted to see the parameters used, we can print out the best model that was found in
the grid search. The code is as follows:

Predicting Sports Winners with Decision Trees

[67]

The result shows the parameters that were used in the best scoring model:

Engineering new features
In the previous few examples, we saw that changing the features can have quite a large
impact on the performance of the algorithm. Through our small amount of testing, we had
more than 10 percent variance just from the features.

You can create features that come from a simple function in pandas by doing something like
this:

The feature_creator function must return a list of the feature's value for each sample in the
dataset. A common pattern is to use the dataset as a parameter:

You can create those features more directly by setting all the values to a single default
value, like 0 in the next line:

You can then iterate over the dataset, computing the features as you go. We used
this format in this chapter to create many of our features:

Keep in mind that this pattern isn't very efficient. If you are going to do this, try all of your
features at once.

Predicting Sports Winners with Decision Trees

[68]

A common best practice is to touch every sample as little as possible,
preferably only once.

Some example features that you could try and implement are as follows:

How many days has it been since each team's previous match? Teams may be
tired if they play too many games in a short time frame.
How many games of the last five did each team win? This will give a more stable
form of the and features we extracted earlier
(and can be extracted in a very similar way).
Do teams have a good record when visiting certain other teams? For instance, one
team may play well in a particular stadium, even if they are the visitors.

If you are facing trouble extracting features of these types, check the pandasdocumentation
at for help. Alternatively, you can try
an online forum such as Stack Overflow for assistance.

More extreme examples could use player data to estimate the strength of each team's sides
to predict who won. These types of complex features are used every day by gamblers and
sports betting agencies to try to turn a profit by predicting the outcome of sports matches.

Summary
In this chapter, we extended our use of scikit-learn's classifiers to perform classification and
introduced the library to manage our data. We analyzed real-world data on
basketball results from the NBA, saw some of the problems that even well-curated data
introduces, and created new features for our analysis.

We saw the effect that good features have on performance and used an ensemble algorithm,
random forests, to further improve the accuracy. To take these concepts further, try to create
your own features and test them out. Which features perform better? If you have trouble
coming up with features, think about what other datasets can be included. For example, if
key players are injured, this might affect the results of a specific match and cause a better
team to lose.

In the next chapter, we will extend the affinity analysis that we performed in the first
chapter to create a program to find similar books. We will see how to use algorithms for
ranking and also use an approximation to improve the scalability of data mining.

44
Recommending Movies Using

Affinity Analysis
In this chapter, we will look at affinity analysis which determines when objects occur
frequently together. This is also colloquially called market basket analysis, after one of the
common use cases - determining when items are purchased together frequently in a store.

In , Predicting Sports Winners with Decision Trees, we looked at an object as a focus
and used features to describe that object. In this chapter, the data has a different form. We
have transactions where the objects of interest (movies, in this chapter) are used within
those transactions in some way. The aim is to discover when objects occur simultaneously.
In a case where we wish to work out when two movies are recommended by the same
reviewers, we can use affinity analysis.

The key concepts of this chapter are as follows:

Affinity analysis for product recommendations
Feature association mining using the Apriori algorithm
Recommendation Systems and the inherent challenges
Sparse data formats and how to use them

Recommending Movies Using Affinity Analysis

[70]

Affinity analysis
Affinity analysis is the task of determining when objects are used in similar ways. In the
previous chapter, we focused on whether the objects themselves are similar - in our case
whether the games were similar in nature. The data for affinity analysis is often described in
the form of a transaction. Intuitively, this comes from a transaction at a store—determining
when objects are purchased together as a way to recommend products to users that they
might purchase.

However, affinity analysis can be applied to many processes that do not use transactions in
this sense:

Fraud detection
Customer segmentation
Software optimization
Product recommendations

Affinity analysis is usually much more exploratory than classification. At the very least, we
often simply rank the results and choose the top five recommendations (or some other
number), rather than expect the algorithm to give us a specific answer.

Furthermore, we often don't have the complete dataset we expect for many classification
tasks. For instance, in movie recommendation, we have reviews from different people on
different movies. However, it is highly unlikely we have each reviewer review all of the
movies in our dataset. This leaves an important and difficult question in affinity analysis. If
a reviewer hasn't reviewed a movie, is that an indication that they aren't interested in the
movie (and therefore wouldn't recommend it) or simply that they haven't reviewed it yet?

Thinking about gaps in your datasets can lead to questions like this. In turn, that can lead to
answers that may help improve the efficacy of your approach. As a budding data miner,
knowing where your models and methodologies need improvement is key to creating great
results.

Recommending Movies Using Affinity Analysis

[71]

Algorithms for affinity analysis
We introduced a basic method for affinity analysis in , Getting Started with Data
Mining, which tested all of the possible rule combinations. We computed the confidence
and support for each rule, which in turn allowed us to rank them to find the best rules.

However, this approach is not efficient. Our dataset in , Getting Started with Data
Mining, had just five items for sale. We could expect even a small store to have hundreds of
items for sale, while many online stores would have thousands (or millions!). With a naive
rule creation, such as our previous algorithm from , Getting Started with Data
Mining, the growth in the time needed to compute these rules increases exponentially. As
we add more items, the time it takes to compute all rules increases significantly faster.
Specifically, the total possible number of rules is 2n - 1. For our five-item dataset, there are
31 possible rules. For 10 items, it is 1023. For just 100 items, the number has 30 digits. Even
the drastic increase in computing power couldn't possibly keep up with the increases in the
number of items stored online. Therefore, we need algorithms that work smarter, as
opposed to computers that work harder.

The classic algorithm for affinity analysis is called the Apriori algorithm. It addresses the
exponential problem of creating sets of items that occur frequently within a database, called
frequent itemsets. Once these frequent itemsets are discovered, creating association rules is
straightforward, which we will see later in the chapter.

The intuition behind Apriori is both simple and clever. First, we ensure that a rule has
sufficient support within the dataset. Defining a minimum support level is the key
parameter for Apriori. To build a frequent itemset we combine smaller frequent
itemsets. For itemset (A, B) to have a support of at least 30, both A and B must occur at least
30 times in the database. This property extends to larger sets as well. For an itemset (A, B,
C, D) to be considered frequent, the set (A, B, C) must also be frequent (as must D).

These frequent itemsets can be built and possible itemsets that are not frequent (of which
there are many) will never be tested. This saves significant time in testing new rules, as the
number of frequent itemsets is expected to be significantly fewer than the total number of
possible itemsets.

Other example algorithms for affinity analysis build on this, or similar concepts, including
the Eclat and FP-growth algorithms. There are many improvements to these algorithms in
the data mining literature that further improve the efficiency of the method. In this chapter,
we will focus on the basic Apriori algorithm.

Recommending Movies Using Affinity Analysis

[72]

Overall methodology
To perform association rule mining for affinity analysis, we first use the Apriori algorithm
to generate frequent itemsets. Next, we create association rules (for example, if a person
recommended movie X, they would also recommend movie Y) by testing combinations of
premises and conclusions within those frequent itemsets.

For the first stage, the Apriori algorithm needs a value for the minimum support1.
that an itemset needs to be considered frequent. Any itemsets with less support
will not be considered.

Setting this minimum support too low will cause Apriori to test a larger
number of itemsets, slowing the algorithm down. Setting it too high will
result in fewer itemsets being considered frequent.

In the second stage, after the frequent itemsets have been discovered, association2.
rules are tested based on their confidence. We could choose a minimum
confidence level, a number of rules to return, or simply return all of them and let
the user decide what to do with them.

In this chapter, we will return only rules above a given confidence level.
Therefore, we need to set our minimum confidence level. Setting this too
low will result in rules that have a high support, but are not very accurate.
Setting this higher will result in only more accurate rules being returned,
but with fewer rules being discovered overall.

Dealing with the movie recommendation
problem
Product recommendation is a big business. Online stores use it to up-sell to customers by
recommending other products that they could buy. Making better recommendations leads
to better sales. When online shopping is selling to millions of customers every year, there is
a lot of potential money to be made by selling more items to these customers.

Recommending Movies Using Affinity Analysis

[73]

Product recommendations, including movie and books, have been researched for many
years; however, the field gained a significant boost when Netflix ran their Netflix Prize
between 2007 and 2009. This competition aimed to determine if anyone can predict a user's
rating of a film better than Netflix was currently doing. The prize went to a team that was
just over 10 percent better than the current solution. While this may not seem like a large
improvement, such an improvement would net millions to Netflix in revenue from better
movie recommendations over the following years.

Obtaining the dataset
Since the inception of the Netflix Prize, Grouplens, a research group at the University of
Minnesota, has released several datasets that are often used for testing algorithms in this
area. They have released several versions of a movie rating dataset, which have different
sizes. There is a version with 100,000 reviews, one with 1 million reviews and one with 10
million reviews.

The datasets are available from and the
dataset we are going to use in this chapter is the MovieLens 100K dataset (with 100,000
reviews). Download this dataset and unzip it in your data folder. Start a new
Jupyter Notebook and type the following code:

Ensure that points to the u.data file in the unzipped folder.

Loading with pandas
The dataset is in a good shape; however, there are some changes from the
default options in that we need to make. To start with, the data is
separated by tabs, not commas. Next, there is no heading line. This means the first line in
the file is actually data and we need to manually set the column names.

When loading the file, we set the delimiter parameter to the tab character, tell pandas not to
read the first row as the header (with) and to set the column names with
given values. Let's look at the following code:

Recommending Movies Using Affinity Analysis

[74]

While we won't use it in this chapter, you can properly parse the date timestamp using the
following line. Dates for reviews can be an important feature in recommendation
prediction, as movies that are rated together often have more similar rankings than movies
ranked separately. Accounting for this can improve models significantly.

You can view the first few records by running the following in a new cell:

The result will come out looking something like this:

UserID MovieID Rating Datetime

0 196 242 3 1997-12-04 15:55:49

1 186 302 3 1998-04-04 19:22:22

2 22 377 1 1997-11-07 07:18:36

3 244 51 2 1997-11-27 05:02:03

4 166 346 1 1998-02-02 05:33:16

Sparse data formats
This dataset is in a sparse format. Each row can be thought of as a cell in a large feature
matrix of the type used in previous chapters, where rows are users and columns are
individual movies. The first column would be each user's review of the first movie, the
second column would be each user's review of the second movie, and so on.

There are around 1,000 users and 1,700 movies in this dataset, which means that the full
matrix would be quite large (nearly 2 million entries). We may run into issues storing the
whole matrix in memory and computing on it would be troublesome. However, this matrix
has the property that most cells are empty, that is, there is no review for most movies for
most users. There is no review of movie number 675 for user number 213 though, and not
for most other combinations of user and movie.

The format given here represents the full matrix, but in a more compact way. The first row
indicates that user number 196 reviewed movie number 242, giving it a ranking of 3 (out of
five) on December 4, 1997.

Recommending Movies Using Affinity Analysis

[75]

Any combination of user and movie that isn't in this database is assumed to not exist. This
saves significant space, as opposed to storing a bunch of zeroes in memory. This type of
format is called a sparse matrix format. As a rule of thumb, if you expect about 60 percent
or more of your dataset to be empty or zero, a sparse format will take less space to store.

When computing on sparse matrices, the focus isn't usually on the data we
don't have—comparing all of the zeroes. We usually focus on the data we
have and compare those.

Understanding the Apriori algorithm and its
implementation
The goal of this chapter is to produce rules of the following form: if a person recommends this
set of movies, they will also recommend this movie. We will also discuss extensions where a
person who recommends a set of movies, is likely to recommend another particular movie.

To do this, we first need to determine if a person recommends a movie. We can do this by
creating a new feature Favorable, which is True if the person gave a favorable review to a
movie:

We can see the new feature by viewing the dataset:

UserID MovieID Rating Datetime Favorable

10 62 257 2 1997-11-12 22:07:14 False

11 286 1014 5 1997-11-17 15:38:45 True

12 200 222 5 1997-10-05 09:05:40 True

13 210 40 3 1998-03-27 21:59:54 False

14 224 29 3 1998-02-21 23:40:57 False

Recommending Movies Using Affinity Analysis

[76]

We will sample our dataset to form training data. This also helps reduce the size of the
dataset that will be searched, making the Apriori algorithm run faster. We obtain all
reviews from the first 200 users:

Next, we can create a dataset of only the favorable reviews in our sample:

We will be searching the user's favorable reviews for our itemsets. So, the next thing we
need is the movies which each user has given a favorable rating. We can compute this by
grouping the dataset by the and iterating over the movies in each group:

In the preceding code, we stored the values as a , allowing us to quickly check if
a movie has been rated by a user.

Sets are much faster than lists for this type of operation, and we will use them in later code.

Finally, we can create a that tells us how frequently each movie has been given
a favorable review:

We can see the top five movies by running the following code:

Let's see the top five movies list. We only have IDs now, and will get their titles later in the
chapter.

Movie ID Favorable

50 100

100 89

258 83

181 79

174 74

Recommending Movies Using Affinity Analysis

[77]

Looking into the basics of the Apriori algorithm
The Apriori algorithm is part of our affinity analysis methodology and deals specifically
with finding frequent itemsets within the data. The basic procedure of Apriori builds up
new candidate itemsets from previously discovered frequent itemsets. These candidates are
tested to see if they are frequent, and then the algorithm iterates as explained here:

Create initial frequent itemsets by placing each item in its own itemset. Only1.
items with at least the minimum support are used in this step.
New candidate itemsets are created from the most recently discovered frequent2.
itemsets by finding supersets of the existing frequent itemsets.
All candidate itemsets are tested to see if they are frequent. If a candidate is not3.
frequent then it is discarded. If there are no new frequent itemsets from this step,
go to the last step.
Store the newly discovered frequent itemsets and go to the second step.4.
Return all of the discovered frequent itemsets.5.

This process is outlined in the following workflow:

Recommending Movies Using Affinity Analysis

[78]

Implementing the Apriori algorithm
On the first iteration of Apriori, the newly discovered itemsets will have a length of 2, as
they will be supersets of the initial itemsets created in the first step. On the second iteration
(after applying the fourth step and going back to step 2), the newly discovered itemsets will
have a length of 3. This allows us to quickly identify the newly discovered itemsets, as
needed in the second step.

We can store our discovered frequent itemsets in a dictionary, where the key is the length of
the itemsets. This allows us to quickly access the itemsets of a given length, and therefore
the most recently discovered frequent itemsets, with the help of the following code:

We also need to define the minimum support needed for an itemset to be considered
frequent. This value is chosen based on the dataset but try different values to see how that
affects the result. I recommend only changing it by 10 percent at a time though, as the time
the algorithm takes to run will be significantly different! Let's set a minimum support value:

To implement the first step of the Apriori algorithm, we create an itemset
with each movie individually and test if the itemset is frequent. We use

, as they allow us to perform faster set-based operations later
on, and they can also be used as keys in our counting dictionary (normal
sets cannot).

Let's look at the following example of code:

We implement the second and third steps together for efficiency by creating a function that
takes the newly discovered frequent itemsets, creates the supersets, and then tests if they
are frequent. First, we set up the function to perform these steps:

Recommending Movies Using Affinity Analysis

[79]

In keeping with our rule of thumb of reading through the data as little as possible, we
iterate over the dataset once per call to this function. While this doesn't matter too much in
this implementation (our dataset is relatively small compared to the average computer),
single-pass is a good practice to get into for larger applications.

Let's have a look at the core of this function in detail. We iterate through each user, and each
of the previously discovered itemsets, and then check if it is a subset of the current set of
reviews, which are stored in (note that here, k_1 means k-1). If it is, this
means that the user has reviewed each movie in the itemset. This is done by
the line.

We can then go through each individual movie that the user has reviewed (that is not
already in the itemset), create a superset by combining the itemset with the new movie and
record that we saw this superset in our counting dictionary. These are the candidate
frequent itemsets for this value of k.

We end our function by testing which of the candidate itemsets have enough support to be
considered frequent and return only those that have a support more than our
value.

This function forms the heart of our Apriori implementation and we now create a loop that
iterates over the steps of the larger algorithm, storing the new itemsets as we increase k
from 1 to a maximum value. In this loop, k represents the length of the soon-to-be
discovered frequent itemsets, allowing us to access the previously most discovered ones by
looking in our frequent_itemsets dictionary using the key k - 1. We create the frequent
itemsets and store them in our dictionary by their length. Let's look at the code:

Recommending Movies Using Affinity Analysis

[80]

If we do find frequent itemsets, we print out a message to let us know the loop will be
running again. If we don't, we stop iterating, as there cannot be frequent itemsets for k+1 if
there are no frequent itemsets for the current value of k, therefore we finish the algorithm.

We use to ensure that the printouts happen while
the code is still running. Sometimes, in large loops in particular cells, the
printouts will not happen until the code has completed. Flushing the
output in this way ensures that the printout happens when we want,
rather than when the interface decides it can allocate the time to print.
Don't flush too frequently though—the flush operation carries a
computational cost (as does normal printing) and this will slow down the
program.

You can now run the above code.
The preceding code returns about 2000 frequent itemsets of varying lengths. You'll notice
that the number of itemsets grows as the length increases before it shrinks. It grows because
of the increasing number of possible rules. After a while, the large number of combinations
no longer has the support necessary to be considered frequent. This results in the number
shrinking. This shrinking is the benefit of the Apriori algorithm. If we search all possible
itemsets (not just the supersets of frequent ones), we would be searching thousands of times
more itemsets to see if they are frequent.

Even if this shrinking didn't occur, the algorithm meets an absolute end when rules for a
combination of all movies together is discovered. Therefore the Apriori algorithm will
always terminate.

It may take a few minutes for this code to run, more if you have older
hardware. If you find you are having trouble running any of the code
samples, take a look at using an online cloud provider for additional
speed. Details about using the cloud to do the work are given in
Appendix, Next Steps.

Recommending Movies Using Affinity Analysis

[81]

Extracting association rules
After the Apriori algorithm has completed, we have a list of frequent itemsets. These aren't
exactly association rules, but they can easily be converted into these rules. A frequent
itemset is a set of items with a minimum support, while an association rule has a premise
and a conclusion. The data is the same for the two.

We can make an association rule from a frequent itemset by taking one of the
movies in the itemset and denoting it as the conclusion. The other movies
in the itemset will be the premise. This will form rules of the following
form: if a reviewer recommends all of the movies in the premise, they will also
recommend the conclusion movie.

For each itemset, we can generate a number of association rules by setting each movie to be
the conclusion and the remaining movies as the premise.

In code, we first generate a list of all of the rules from each of the frequent itemsets, by
iterating over each of the discovered frequent itemsets of each length. We then iterate over
every movie in the itemset, as the conclusion.

This returns a very large number of candidate rules. We can see some by printing out the
first few rules in the list:

The resulting output shows the rules that were obtained:

In these rules, the first part (the

Next, we compute the confidence of each of these rules. This is performed much like in
, Getting Started with Data Mining, with the only changes being those necessary for

computing using the new data format.

Recommending Movies Using Affinity Analysis

[82]

The process of computing confidence starts by creating dictionaries to store how many
times we see the premise leading to the conclusion (a correct example of the rule) and how
many times it doesn't (an incorrect example). We then iterate over all reviews and rules,
working out whether the premise of the rule applies and, if it does, whether the conclusion
is accurate.

We then compute the confidence for each rule by dividing the correct count by the total
number of times the rule was seen:

Now we can print the top five rules by sorting this confidence dictionary and printing the
results:

Recommending Movies Using Affinity Analysis

[83]

The resulting printout shows only the movie IDs, which isn't very helpful without the
names of the movies also. The dataset came with a file called u.items, which stores the
movie names and their corresponding MovieID (as well as other information, such as the
genre).

We can load the titles from this file using pandas. Additional information about the file and
categories is available in the README file that came with the dataset. The data in the files
is in CSV format, but with data separated by the | symbol; it has no header
and the encoding is important to set. The column names were found in the README file.

Getting the movie title is an important and frequently used step, therefore it makes sense to
turn it into a function. We will create a function that will return a movie's title from its
MovieID, saving us the trouble of looking it up each time. Let's look at the code:

In a new Jupyter Notebook cell, we adjust our previous code for printing out the top rules
to also include the titles:

Recommending Movies Using Affinity Analysis

[84]

The result is much more readable (there are still some issues, but we can ignore them for
now):

Evaluating the association rules
In a broad sense, we can evaluate the association rules using the same concept as for
classification. We use a test set of data that was not used for training, and evaluate our
discovered rules based on their performance in this test set.

To do this, we will compute the test set confidence, that is, the confidence of each rule on
the testing set. We won't apply a formal evaluation metric in this case; we simply examine
the rules and look for good examples.

Recommending Movies Using Affinity Analysis

[85]

Formal evaluation could include a classification accuracy by determining the accuracy of
predicting whether a user rates a given movie as favorable. In this case, as described below,
we will informally look at the rules to find those that are more reliable:

First, we extract the test dataset, which is all of the records that we didn't use in1.
the training set. We used the first 200 users (by ID value) for the training set, and
we will use all of the rest for the testing dataset. As with the training set, we will
also get the favorable reviews for each of the users in this dataset as well. Let's
look at the code:

We then count the correct instances where the premise leads to the conclusion, in2.
the same way that we did before. The only change here is the use of the test data
instead of the training data. Let's look at the code:

Next, we compute the confidence of each rule from the correct counts and sort3.
them. Let's look at the code:

Finally, we print out the best association rules with the titles instead of the movie4.
IDs:

Recommending Movies Using Affinity Analysis

[86]

We can now see which rules are most applicable in new unseen data:

Recommending Movies Using Affinity Analysis

[87]

The second rule, for instance, has a perfect confidence in the training data, but it is only
accurate in 60 percent of cases for the test data. Many of the other rules in the top 10 have
high confidences in test data, making them good rules for making recommendations.

You may also notice that these movies tend to be very popular and good films. This gives us
a baseline algorithm that we could compare against, i.e. instead of trying to do personalized
recommendations, just recommend the most liked movies overall. Have a shot at
implementing this algorithm - does the Apriori algorithm outperform it and by how much?
Another baseline could be to simply recommend movies at random from the same genre.

If you are looking through the rest of the rules, some will have a test
confidence of -1. Confidence values are always between 0 and 1. This
value indicates that the particular rule wasn't found in the test dataset at
all.

Summary
In this chapter we performed affinity analysis in order to recommend movies based on a
large set of reviewers. We did this in two stages. First, we found frequent itemsets in the
data using the Apriori algorithm. Then, we created association rules from those itemsets.

The use of the Apriori algorithm was necessary due to the size of the dataset. In ,
Getting Started With Data Mining, we used a brute-force approach, which has exponential
growth in the time needed to compute those rules required for a smarter approach. This is a
common pattern for data mining: we can solve many problems in a brute force manner for
small datasets, but smarter algorithms are required to apply the concepts to larger datasets.

We performed training on a subset of our data in order to find the association rules, and
then tested those rules on the rest of the data—a testing set. From what we discussed in the
previous chapters, we could extend this concept to use cross-fold validation to better
evaluate the rules. This would lead to a more robust evaluation of the quality of each rule.

To take the concepts in this chapter further, investigate which movies obtain high overall
scores (i.e. lots of recommendations), but do not have adequate rules to recommend them to
new users. How would you alter the algorithm to recommend these movies?

So far, all of our datasets have been described in terms of features. However, not all datasets
are pre-defined in this way. In the next chapter, we will look at scikit-learn's transformers
(they were introduced in Chapter 3, Predicting Sports Winners with Decision Trees) as a way to
extract features from data. We will discuss how to implement our own transformers, extend
existing ones, and concepts we can implement using them.

55
Features and scikit-learn

Transformers
The datasets we have used so far have been described in terms of features. In the previous
chapter, we used a transaction-centric dataset. However, ultimately this was just a different
format for representing feature-based data.

There are many other types of datasets, including text, images, sounds, movies, or even real
objects. Most data mining algorithms rely on having numerical or categorical features. This
means we need a way to represent these types before we input them into the data mining
algorithm. We call this representation a model.

In this chapter, we will discuss how to extract numerical and categorical features, and
choose the best features when we do have them. We will discuss some common patterns
and techniques for extracting features. Choosing your model appropriately is critically
important to the outcome of the data mining exercise, more so than the choice of
classification algorithm.

The key concepts introduced in this chapter include:

Extracting features from datasets
Creating models for your data
Creating new features
Selecting good features
Creating your own transformer for custom datasets

Features and scikit-learn Transformers

[89]

Feature extraction
Extracting features is one of the most critical tasks in data mining, and it generally affects
your end result more than the choice of data mining algorithm. Unfortunately, there are no
hard and fast rules for choosing features that will result in high-performance data mining.
The choice of features determines the model that you are using to represent your data.

Model creation is where the science of data mining becomes more of an art
and why automated methods of performing data mining (there are several
methods of this type) focus on algorithm choice and not model creation.
Creating good models relies on intuition, domain expertise, data mining
experience, trial and error, and sometimes a little luck.

Representing reality in models
Given what we have done so far in the book, it is easy to forget that the reason we are
performing data mining is to affect real world objects, not just manipulating a matrix of
values. Not all datasets are presented in terms of features. Sometimes, a dataset consists of
nothing more than all of the books that have been written by a given author. Sometimes, it
is the film of each of the movies released in 1979. At other times, it is a library collection of
interesting historical artifacts.

From these datasets, we may want to perform a data mining task. For the books, we may
want to know the different categories that the author writes. In the films, we may wish to
see how women are portrayed. In the historical artifacts, we may want to know whether
they are from one country or another. It isn't possible to just pass these raw datasets into a
decision tree and see what the result is.

For a data mining algorithm to assist us here, we need to represent these as features.
Features are a way to create a model and the model provides an approximation of reality in
a way that data mining algorithms can understand. Therefore, a model is just a simplified
version of some aspect of the real world. As an example, the game of chess is a simplified
model (in game form) for historical warfare.

Selecting features has another advantage: they reduce the complexity of
the real world into a more manageable model.

Features and scikit-learn Transformers

[90]

Imagine how much information it would take to properly, accurately, and fully describe a
real-world object to someone that has no background knowledge of the item. You would
need to describe the size, weight, texture, composition, age, flaws, purpose, origin, and so
on.

As the complexity of real objects is too much for current algorithms, we use these simpler
models instead.

This simplification also focuses our intent in the data mining application. In later chapters,
we will look at clustering and where it is critically important. If you put random features in,
you will get random results out.

However, there is a downside as this simplification reduces the detail, or may remove good
indicators of the things we wish to perform data mining on.

Thought should always be given to how to represent reality in the form of a model. Rather
than just using what has been used in the past, you need to consider the goal of the data
mining exercise. What are you trying to achieve? In , Predicting Sports Winners
with Decision Trees, we created features by thinking about the goal (predicting winners) and
used a little domain knowledge to come up with ideas for new features.

Not all features need to be numeric or categorical. Algorithms have been
developed that work directly on text, graphs, and other data structures.
Unfortunately, those algorithms are outside the scope of this book. In this
book, and normally in your data mining career, we mainly use numeric or
categorical features.

The Adult dataset is a great example of taking a complex reality and attempting to model it
using features. In this dataset, the aim is to estimate if someone earns more than $50,000 per
year.

To download the dataset, navigate to
 and click on the Data

Folder link. Download the and into a
directory named Adult in your data folder.

This dataset takes a complex task and describes it in features. These features describe the
person, their environment, their background, and their life status.

Features and scikit-learn Transformers

[91]

Open a new Jupyter Notebook for this chapter, set the data filename and load the data with
pandas:

Most of the code is the same as in the previous chapters.

Don't want to type those heading names? Don't forget you can download
the code from Packt Publishing, or alternatively from the author's GitHub
repository for this book:

The adult file itself contains two blank lines at the end of the file. By default, pandas will
interpret the penultimate new line to be an empty (but valid) row. To remove this, we
remove any line with invalid numbers (the use of just makes sure the same
Dataframe is affected, rather than creating a new one):

Having a look at the dataset, we can see a variety of features from :

The results show each of the feature names that are stored inside an Index object from
pandas:

Features and scikit-learn Transformers

[92]

Common feature patterns
While there are millions of ways to create models, there are some common patterns that are
employed across different disciplines. However, choosing appropriate features is tricky and
it is worth considering how a feature might correlate to the end result. As a well known
adage goes, don't judge a book by its cover—it is probably not worth considering the size of a
book if you are interested in the message contained within.

Some commonly used features focus on the physical properties of the real world objects
being studied, for example:

Spatial properties such as the length, width, and height of an object
Weight and/or density of the object
Age of an object or its components
The type of the object
The quality of the object

Other features might rely on the usage or history of the object:

The producer, publisher, or creator of the object
The year of manufacturing

Other features describe a dataset in terms of its components:

Frequency of a given subcomponent, such as a word in a book
Number of subcomponents and/or the number of different subcomponents
Average size of the subcomponents, such as the average sentence length

Ordinal features allow us to perform ranking, sorting, and grouping of similar values. As
we have seen in previous chapters, features can be numerical or categorical.

Numerical features are often described as being ordinal. For example, three people, Alice,
Bob, and Charlie, may have heights of 1.5 m, 1.6 m, and 1.7 m. We would say that Alice and
Bob are more similar in height than Alice and Charlie.

Features and scikit-learn Transformers

[93]

The Adult dataset that we loaded in the last section contains examples of continuous,
ordinal features. For example, the Hours-per-week feature tracks how many hours per
week people work. Certain operations make sense on a feature like this. They include
computing the mean, standard deviation, minimum, and maximum. There is a function in
pandas for giving some basic summary stats of this type:

The result tells us a little about this feature:

Some of these operations do not make sense for other features. For example, it doesn't make
sense to compute the sum of the education statuses of these people. In contrast, it would
make sense to compute the sum of the number of orders by each customer on an online
store.

There are also features that are not numerical, but still ordinal. The Education feature in the
Adult dataset is an example of this. For example, a Bachelor's degree is a higher education
status than finishing high school, which is a higher status than not completing high school.
It doesn't quite make sense to compute the mean of these values, but we can create an
approximation by taking the median value. The dataset gives a helpful feature,

, which assigns a number that is basically equivalent to the number of
years of education completed. This allows us to quickly compute the median:

The result is 10, or finishing one year past high school. If we didn't have this, we could
compute the median by creating an ordering over the education values.

Features and scikit-learn Transformers

[94]

Features can also be categorical. For instance, a ball can be a tennis ball, cricket ball, football,
or any other type of ball. Categorical features are also referred to as nominal features. For
nominal features, the values are either the same or they are different. While we could rank
balls by size or weight, just the category alone isn't enough to compare things. A tennis ball
is not a cricket ball, and it is also not a football. We could argue that a tennis ball is more
similar to a cricket ball (say, in size), but the category alone doesn't differentiate this—they
are the same, or they are not.

We can convert categorical features to numerical features using the one-hot encoding, as we
saw in , Predicting Sports Winners with Decision Trees. For the aforementioned
categories of balls, we can create three new binary features: is a tennis ball, is a cricket ball,
and is a football. This process is the one-hot encoding we used in , Predicting
Sports Winners with Decision Trees. For a tennis ball, the vector would be . A
cricket ball has the values , while a football has the value . These are
binary features but can be used as continuous features by many algorithms. One key reason
for doing this is that it easily allows for direct numerical comparison (such as computing the
distance between samples).

The Adult dataset contains several categorical features, with Work-Class being one
example. While we could argue that some values are of higher rank than others (for
instance, a person with a job is likely to have a better income than a person without), it
doesn't make sense for all values. For example, a person working for the state government
is not more or less likely to have a higher income than someone working in the private
sector.

We can view the unique values for this feature in the dataset using the function:

The result shows the unique values in this column:

There are some missing values in the preceding data, but they won't affect our
computations in this example. You can also use the function to
see how frequently each value appears.

Features and scikit-learn Transformers

[95]

Another really useful step to take with a new dataset is to visualise it. The following code
will create a swarm plot, giving a view of how education and hours-worked relate to the
final classification (identified by colour):

In the above code, we sample the dataset to show every 50 rows, using the
dataset indexing. Setting this to just will result in all samples being shown, but that
may also make the graph hard to read.

Features and scikit-learn Transformers

[96]

Similarly, we can convert numerical features to categorical features through a process called
discretization, as we saw in , Getting Started With Data Mining. We can call any
person who is taller than 1.7 m tall, and any person shorter than 1.7 m short. This gives us a
categorical feature (although still an ordinal one). We do lose some data here. For instance,
two people, one 1.69 m tall and one 1.71 m, will be in two different categories and
considered drastically different from each other by our algorithm. In contrast, a person 1.2
m tall will be considered of roughly the same height as the person 1.69 m tall! This loss of
detail is a side effect of discretization, and it is an issue that we deal with when creating
models.

In the Adult dataset, we can create a feature, which tells us if a person works
more than 40 hours per week. This turns our continuous feature () into a
categorical one that is True if the number of hours is more than 40, False otherwise:

Creating good features
Simplification due to modeling is a key reason we do not have data mining methods that
can just simply be applied to any dataset. A good data mining practitioner will need, or
obtain, domain knowledge in the area they are applying data mining. They will look at the
problem, the available data, and come up with a model that represents what they are trying
to achieve.

For instance, a person's height feature may describe one component of a person, such as
their ability to play basketball, but may not describe their academic performance well. If we
were attempting to predict a person's grade, we may not bother measuring each person's
height.

This is where data mining becomes more art than science. Extracting good features is
difficult and is the topic of significant and ongoing research. Choosing better classification
algorithms can improve the performance of a data mining application, but choosing better
features is often a better option.

In all data mining applications, you should first outline what you are
looking for before you start designing the methodology that will find it.
This will dictate the types of features you are aiming for, the types of
algorithms that you can use, and the expectations in the final result.

Features and scikit-learn Transformers

[97]

Feature selection
After initial modeling, we will often have a large number of features to choose from, but we
wish to select only a small subset. There are many possible reasons for this:

Reducing complexity: Many data mining algorithms need significantly more
time and resources when the number of features increase. Reducing the number
of features is a great way to make an algorithm run faster or with fewer
resources.
Reducing noise: Adding extra features doesn't always lead to better
performance. Extra features may confuse the algorithm, finding correlations and
patterns in training data that do not have any actual meaning. This is common in
both smaller and larger datasets. Choosing only appropriate features is a good
way to reduce the chance of random correlations that have no real meaning.
Creating readable models: While many data mining algorithms will happily
compute an answer for models with thousands of features, the results may be
difficult to interpret for a human. In these cases, it may be worth using fewer
features and creating a model that a human can understand.

Some classification algorithms can handle data with issues such as those described before.
Getting the data right and getting the features to effectively describe the dataset you are
modeling can still assist algorithms.

There are some basic tests we can perform, such as ensuring that the features are at least
different. If a feature's values are all the same, it can't give us extra information to perform
our data mining.

The VarianceThreshold transformer in , for instance, will remove any
feature that doesn't have at least a minimum level of variance in the values. To show how
this works, we first create a simple matrix using NumPy:

The result is the numbers 0 to 29, in three columns and 10 rows. This represents a synthetic
dataset with 10 samples and three features:

Features and scikit-learn Transformers

[98]

Then, we set the entire second column/feature to the value 1:

The result has lots of variance in the first and third rows, but no variance in the second row:

We can now create a transformer and apply it to our dataset:

Now, the result does not have the second column:

We can observe the variances for each column by printing the

Features and scikit-learn Transformers

[99]

The result shows that while the first and third column contains at least some information,
the second column had no variance:

A simple and obvious test like this is always good to run when seeing data for the first time.
Features with no variance do not add any value to a data mining application; however, they
can slow down the performance of the algorithm and reduce the efficacy.

Selecting the best individual features
If we have a number of features, the problem of finding the best subset is a difficult task. It
relates to solving the data mining problem itself, multiple times. As we saw in ,
Recommending Movies Using Affinity Analysis, subset-based tasks increase exponentially as
the number of features increase. This exponential growth in the time needed is also true for
finding the best subset of features.

One basic workaround to this problem is not to look for a subset that works well together,
rather than just finding the best individual features. This univariate feature selection gives
us a score based on how well a feature performs by itself. This is usually done for
classification tasks, and we generally measure some type of association between a variable
and the target class.

The scikit-learn package has a number of transformers for performing univariate feature
selection. They include SelectKBest, which returns the k-best-performing features, and
SelectPercentile, which returns the top R% of features. In both cases, there are a number of
methods of computing the quality of a feature.

There are many different methods to compute how effectively a single feature correlates
with a class value. A commonly used method is the chi-squared (χ2) test. Other methods
include mutual information and entropy.

We can observe single-feature tests in action using our Adult dataset. First, we extract a
dataset and class values from our pandas DataFrame. We get a selection of the features:

We will also create a target class array by testing whether the Earnings-Raw value is above
$50,000 or not. If it is, the class will be True. Otherwise, it will be False. Let's look at the
code:

Features and scikit-learn Transformers

[100]

Next, we create our transformer using the chi2 function and a SelectKBest transformer:

Running will call fit and then transform with the same dataset.
The result will create a new dataset, choosing only the best three features.
Let's look at the code:

The resulting matrix now only contains three features. We can also get the scores
for each column, allowing us to find out which features were used. Let's look at
the code:

The printed results give us these scores:

The highest values are for the first, third, and fourth columns Correlates to the Age, Capital-
Gain, and Capital-Loss features. Based on a univariate feature selection, these are the best
features to choose.

If you'd like to find out more about the features in the Adult dataset, take
a look at the adult.names file that comes with the dataset and the
academic paper it references.

We could also implement other correlations, such as the Pearson's correlation coefficient.
This is implemented in SciPy, a library used for scientific computing (scikit-learn uses it as
a base).

If scikit-learn is working on your computer, so is SciPy. You do not need
to install anything further to get this sample working.

First, we import the function from SciPy:

Features and scikit-learn Transformers

[101]

The preceding function almost fits the interface needed to be used in scikit-learn's
univariate transformers. The function needs to accept two arrays (x and y in our example)
as parameters and returns two arrays, the scores for each feature and the corresponding p-
values. The chi2 function we used earlier only uses the required interface, which allowed us
to just pass it directly to SelectKBest.

The pearsonr function in SciPy accepts two arrays; however, the X array it accepts is only
one dimension. We will write a wrapper function that allows us to use this for multivariate
arrays like the one we have. Let's look at the code:

The Pearson value could be between -1 and 1. A value of 1 implies a
perfect correlation between two variables, while a value of -1 implies a
perfect negative correlation, that is, high values in one variable give low
values in the other and vice versa. Such features are really useful to have.
For this reason, we have stored the absolute value in the scores array,
rather than the original, signed value.

Now, we can use the transformer class as before to rank the features using the Pearson
correlation coefficient:

This returns a different set of features! The features chosen this way are the first, second,
and fifth columns: the Age, Education, and Hours-per-week worked. This shows that there
is not a definitive answer to what the best features are— it depends on the metric used and
the process undertaken.

Features and scikit-learn Transformers

[102]

We can see which feature set is better by running them through a classifier. Keep in mind
that the results only indicate which subset is better for a particular classifier and/or feature
combination—there is rarely a case in data mining where one method is strictly better than
another in all cases! Let's look at the code:

The chi2 average here is 0.83, while the Pearson score is lower at 0.77. For this combination,
chi2 returns better results!

It is worth remembering the goal of this particular data mining activity: predicting wealth.
Using a combination of good features and feature selection, we can achieve 83 percent
accuracy using just three features of a person!

Feature creation
Sometimes, just selecting features from what we have isn't enough. We can create features
in different ways from features we already have. The one-hot encoding method we saw
previously is an example of this. Instead of having category features with options A, B, and
C, we would create three new features Is it A?, Is it B?, Is it C?.

Creating new features may seem unnecessary and to have no clear benefit—after all, the
information is already in the dataset and we just need to use it. However, some algorithms
struggle when features correlate significantly, or if there are redundant features. They may
also struggle if there are redundant features. For this reason, there are various ways to
create new features from the features we already have.

We are going to load a new dataset, so now is a good time to start a new Jupyter Notebook.
Download the Advertisements dataset from

 and save it to your
Data folder.

Features and scikit-learn Transformers

[103]

Next, we need to load the dataset with pandas. First, we set the data's filename as always:

There are a couple of issues with this dataset that stop us from loading it easily. You can see
these issues by trying to load the dataset with . First, the first few features are
numerical, but pandas will load them as strings. To fix this, we need to write a converting
function that will convert strings to numbers if possible. Otherwise, we will get a Not a
Number (NaN) - an invalid value, which is a special value that indicates that the value
could not be interpreted as a number. It is similar to none or null in other programming
languages.

Another issue with this dataset is that some values are missing. These are represented in the
dataset using the string ?. Luckily, the question mark doesn't convert to a float, so we can
convert those to NaNs using the same concept. In further chapters, we will look at other
ways of dealing with missing values like this.

We will create a function that will do this conversion for us. It attempts to convert the
number to a float, and if that fails, it returns NumPy's special NaN value that can be stored
in place of a float:

Now, we create a dictionary for the conversion. We want to convert all of the features to
floats:

Also, we want to set the final column, the class, (column index #1558) to a binary feature. In
the Adult dataset, we created a new feature for this. In the dataset, we will convert the
feature while we load it:

Features and scikit-learn Transformers

[104]

Now we can load the dataset using . We use the converters parameter to pass our
custom conversion into pandas:

The resulting dataset is quite large, with 1,559 features and more than 3,000 rows. Here are
some of the feature values, the first five, printed by inserting into a new cell:

This dataset describes images on websites, with the goal of determining whether a given
image is an advertisement or not.

The features in this dataset are not described well by their headings. There are two files
accompanying the ad.data file that have more information: and

. The first three features are the height, width, and ratio of the image size. The
final feature is 1 if it is an advertisement and 0 if it is not.

The other features are 1 for the presence of certain words in the URL, alt text, or caption of
the image. These words, such as the word sponsor, are used to determine if the image is
likely to be an advertisement. Many of the features overlap considerably, as they are
combinations of other features. Therefore, this dataset has a lot of redundant information.

With our dataset loaded in , we will now extract the and data for our
classification algorithms. The matrix will be all of the columns in our Dataframe, except
for the last column. In contrast, the array will be only that last column, feature
Before that though, we simplify our dataset (just for this chapter's sake) by dropping any
row with a NaN value. Let's look at the code:

Features and scikit-learn Transformers

[105]

More than 1000 rows are dropped due to this command, which is fine for our exercise. For
real-world applications, you don't want to discard data if you can help it--instead, you can
use interpolation or value replacing to fill the NaN values. As an example, you can replace
any missing value with the average for that column.

Principal Component Analysis
In some datasets, features heavily correlate with each other. For example, the speed and the
fuel consumption would be heavily correlated in a go-kart with a single gear. While it can
be useful to find these correlations for some applications, data mining algorithms typically
do not need the redundant information.

The ads dataset has heavily correlated features, as many of the keywords are repeated
across the alt text and caption.

The Principal Component Analysis (PCA) algorithm aims to find combinations of features
that describe the dataset in less information. It aims to discover principal components, which
are features that do not correlate with each other and explain the information—specifically
the variance—of the dataset. What this means is that we can often capture most of the
information in a dataset in fewer features.

We apply PCA just like any other transformer. It has one key parameter, which is the
number of components to find. By default, it will result in as many features as you have in
the original dataset. However, these principal components are ranked—the first feature
explains the largest amount of the variance in the dataset, the second a little less, and so on.
Therefore, finding just the first few features is often enough to explain much of the dataset.
Let's look at the code:

The resulting matrix, Xd, has just five features. However, let's look at the amount of
variance that is explained by each of these features:

Features and scikit-learn Transformers

[106]

The result, , shows us that the first
feature accounts for 85.4 percent of the variance in the dataset, the second accounts for 14.5
percent, and so on. By the fourth feature, less than one-tenth of a percent of the variance is
contained in the feature. The other 1,553 features explain even less (this is an ordered array).

The downside to transforming data with PCA is that these features are often complex
combinations of the other features. For example, the first feature of the preceding code
starts with that is, multiply the first feature in the original
dataset by -0.092, the second by -0.995, the third by -0.024. This feature has 1,558 values of
this form, one for each of the original datasets (although many are zeros). Such features are
indistinguishable by humans and it is hard to glean much relevant information from
without a lot of experience working with them.

Using PCA can result in models that not only approximate the original dataset, but can also
improve the performance in classification tasks:

The resulting score is 0.9356, which is (slightly) higher than our original model's score. PCA
won't always give a benefit like this, but it does more often than not.

We are using PCA here to reduce the number of features in our dataset. As
a general rule, you shouldn't use it to reduce overfitting in your data
mining experiments. The reason for this is that PCA doesn't take classes
into account. A better solution is to use regularization. An introduction,
with code, is available at

Another advantage is that PCA allows you to plot datasets that you otherwise couldn't
easily visualize. For example, we can plot the first two features returned by PCA.

First, we tell our Notebook to display plots inline:

Next, we get all of the distinct classes in our dataset (there are only two: is ad or not ad):

Features and scikit-learn Transformers

[107]

We also assign colors to each of these classes:

We use zip to iterate over both lists at the same time, then extract all samples from that
class, and plot them with the color appropriate to the class:

Finally, outside the loop, we create a legend and show the graph, showing where the
samples from each class appear:

Features and scikit-learn Transformers

[108]

Creating your own transformer
As the complexity and type of dataset changes, you might find that you can't find an
existing feature extraction transformer that fits your needs. We will see an example of this
in , Follow Recommendations Using Graph Mining, where we create new features
from graphs.

A transformer is akin to a converting function. It takes data of one form as input and
returns data of another form as output. Transformers can be trained using some training
dataset, and these trained parameters can be used to convert testing data.

The transformer API is quite simple. It takes data of a specific format as input and returns
data of another format (either the same as the input or different) as output. Not much else is
required of the programmer.

The transformer API
Transformers have two key functions:

 This takes a training set of data as input and sets internal parameters
 This performs the transformation itself. This can take either the

training dataset, or a new dataset of the same format

Both and functions should take the same data type as input, but
can return data of a different type while always returns self.

We are going to create a trivial transformer to show the API in action. The transformer will
take a NumPy array as input, and discretize it based on the mean. Any value higher than
the mean (of the training data) will be given the value 1 and any value lower or equal to the
mean will be given the value 0.

We did a similar transformation with the Adult dataset using pandas: we took the Hours-
per-week feature and created a LongHours feature if the value was more than 40 hours per
week. This transformer is different for two reasons. First, the code will conform to the
scikit-learn API, allowing us to use it in a pipeline. Second, the code will learn the mean,
rather than taking it as a fixed value (such as 40 in the LongHours example).

Features and scikit-learn Transformers

[109]

Implementing a Transformer
To start, open up the Jupyter Notebook that we used for the Adult dataset. Then, click on
the Cell menu item and choose Run All. This will rerun all of the cells and ensure that the
notebook is up to date.

First, we import the TransformerMixin, which sets the API for us. While Python doesn't
have strict interfaces (as opposed to languages like Java), using a mixin like this allows
scikit-learn to determine that the class is actually a transformer. We also need to import a
function that checks the input is of a valid type. We will use that soon.

Let's look at the code:

Let's take a look at our class in entirety, and then we will revisit some of the details:

Our class will learn the mean for each feature in the fit method, by
computing , which is then stored as an object attribute. After that, the fit
function returns self, conforming to the API (scikit-learn uses this to allow for chaining
function calls).

After fitting, the transform function takes a matrix with the same number of features
(confirmed by the statement), and simply returns which values are more than the
mean for a given feature.

Now that our class is built, we can now create an instance of this class and use it to
transform our X array:

Features and scikit-learn Transformers

[110]

Take a shot at implementing this Transformer into a workflow, both using a Pipeline and
without. You'll see that by conforming to the Transformer API, it is quite simple to use in
place of a built-in scikit-learn Transformer object.

Unit testing
When creating your own functions and classes, it is always a good idea to do unit testing.
Unit testing aims to test a single unit of your code. In this case, we want to test that our
transformer does as it needs to do.

Good tests should be independently verifiable. A good way to confirm the legitimacy of
your tests is by using another computer language or method to perform the calculations. In
this case, I used Excel to create a dataset, and then computed the mean for each cell. Those
values were then transferred to the unit test.

Unit tests should also, generally, be small and quick to run. Therefore, any data used should
be of a small size. The dataset I used for creating the tests is stored in the Xt variable from
earlier, which we will recreate in our test. The mean of these two features is 13.5 and 15.5,
respectively.

To create our unit test, we import the function from NumPy's
testing, which checks whether two arrays are equal:

Next, we create our function. It is important that the test's name starts with test_,
as this nomenclature is used for tools that automatically find and run tests. We also set up
our testing data:

Features and scikit-learn Transformers

[111]

We can run the test by simply running the function itself:

If there was no error, then the test ran without an issue! You can verify this by changing
some of the tests to deliberately make values incorrect, and confirming that the test fails.
Remember to change them back so that the test passes!

If we had multiple tests, it would be worth using a testing framework, like py.test or nose
to run our tests. Using a framework like this is beyond the scope of this book, but they
manage running tests, recording failures, and providing feedback to you, as a programmer,
to help you improve your code.

Putting it all together
Now that we have a tested transformer, it is time to put it into action. Using what we have
learned so far, we create a Pipeline, set the first step to the MeanDiscrete transformer, and
the second step to a Decision Tree Classifier. We then run a cross-validation and print out
the result. Let's look at the code:

The result is 0.917, which is not as good as before, but very good for a simple binary feature
model.

Features and scikit-learn Transformers

[112]

Summary
In this chapter, we looked at features and transformers and how they can be used in the
data mining pipeline. We discussed what makes a good feature and how to algorithmically
choose good features from a standard set. However, creating good features is more art than
science and often requires domain knowledge and experience.

We then created our own transformer using an interface that allows us to use it in scikit-
learn's helper functions. We will be creating more transformers in later chapters so that we
can perform effective testing using existing functions.

To take the lessons learned in this chapter further, I recommend signing up to the online
data mining competition website and trying some of the competitions. Their
recommended starting place is the Titanic dataset, which allows you to practice the feature
creation aspects of this chapter. Many of the features are not numerical, requiring you to
convert them to numerical features before applying a data mining algorithm.

In the next chapter, we use feature extraction on a corpus of text documents. There are
many transformers and feature types for text, each with their advantages and
disadvantages.

66
Social Media Insight using

Naive Bayes
Text-based documents contain lots of information. Examples include books, legal
documents, social media, and e-mail. Extracting information from text-based documents is
critically important to modern AI systems, for example in search engines, legal AI, and
automated news services.

Extraction of useful features from text is a difficult problem. Text is not numerical in nature,
therefore a model must be used to create features that can be used with data mining
algorithms. The good news is that there are some simple models that do a great job at this,
including the bag-of-words model that we will use in this chapter.

In this chapter, we look at extracting features from text for use in data mining applications.
The specific problem we tackle in this chapter is term disambiguation on social media -
determining which meaning a word has based on its context.

We will cover the following topics in this chapter:

Downloading data from social network APIs
Transformers and models for text data
The Naive Bayes classifier
Using JSON for saving and loading datasets
The NLTK library for feature creation
The F-measure for evaluation

Social Media Insight using Naive Bayes

[114]

Disambiguation
Text data is often called an unstructured format. There is a lot of information in text, but it is
just there; no headings, no required format (save for normal grammatical rules), loose
syntax, and other problems prohibit the easy extraction of information from text. The data is
also highly connected, with lots of mentions and cross-references—just not in a format that
allows us to easily extract it! Even seemingly easy problems, such as determining if a word
is a noun, have lots of weird edge cases that make it difficult to do reliably.

We can compare the information stored in a book with that stored in a large database to see
the difference. In the book, there are characters, themes, places, and lots of information.
However, a book needs to be read and interpreted, with cultural context, to gain this
information. In contrast, a database sits on your server with column names and data types.
All the information is there and the level of interpretation needed to extract specific
information is quite low.

Information about the data, such as its type or its meaning, is called metadata. Text lacks
metadata. A book also contains some metadata in the form of a table of contents and index
but the degree of information included in these sections is significantly lower than that of a
database.

One of the problems in working with text is term disambiguation. When a person uses the
word bank, is this a financial message or an environmental message (such as river bank)?
This type of disambiguation is quite easy in many circumstances for humans (although
there are still troubles), but much harder for computers to do.

In this chapter, we will look at disambiguating the use of the term Python on Twitter's
stream. When people talk about Python, they could be talking about the following things:

The programming language Python
Monty Python, the classic comedy group
The snake Python
A make of shoe called Python

There can be many other things called Python. The aim of our experiment is to take a tweet
mentioning Python and determine whether it is talking about the programming language,
based only on the content of the tweet.

Social Media Insight using Naive Bayes

[115]

A message on Twitter is called a tweet and is limited to 140 characters.
Tweets include lots of metadata, such as the time and date of posting, who
posted it, and so on. However in regards to the topic of the tweet, there is
not much in this regard.

In this chapter, we are going to perform a data mining experiment consisting of the
following steps:

Download a set of tweets from Twitter.1.
Manually classify them to create a dataset.2.
Save the dataset so that we can replicate our research.3.
Use the Naive Bayes classifier to create a classifier to perform term4.
disambiguation.

Downloading data from a social network
We are first going to download a corpus of data from Twitter and use it to sort out spam
from useful content. Twitter provides a robust API for collecting information from its
servers and this API is free for small-scale usage. It is, however, subject to some conditions
that you'll need to be aware of if you start using Twitter's data in a commercial setting.

First, you'll need to sign up for a Twitter account (which is free). Go to
 and register an account if you do not already have one.

Next, you'll need to ensure that you only make a certain number of requests per minute.
This limit is currently 15 requests per 15 minutes (it depends on the exact API). It can be
tricky ensuring that you don't breach this limit, so it is highly recommended that you use a
library to talk to Twitter's API.

If you are using your own code (that is making the web calls with your
own code) to connect with a web-based API, ensure that you read the
documentation about rate limiting their documentation and understand
the limitations. In Python, you can use the library to perform a pause
between calls to ensure you do not breach the limit.

You will then need a key to access Twitter's data. Go to and sign in to
your account. When you are logged in, go to and click on
Create New App. Create a name and description for your app, along with a website
address.

Social Media Insight using Naive Bayes

[116]

If you don't have a website to use, insert a placeholder. Leave the Callback URL field blank
for this app—we won't need it. Agree to the terms of use (if you do) and click on Create
your Twitter application.

Keep the resulting website open—you'll need the access keys that are on this page. Next, we
need a library to talk to Twitter. There are many options; the one I like is simply called

, and is the official Twitter Python library.

You can install using pip3 install twitter (on the command line)
if you are using pip to install your packages. At the time of writing,
Anaconda does not include twitter, therefore you can't use to install
it. If you are using another system or want to build from source, check the
documentation at

Create a new Jupyter Notebook to download the data. We will create several notebooks in
this chapter for various different purposes, so it might be a good idea to also create a folder
to keep track of them. This first notebook, , is specifically for
downloading new Twitter data.

First, we import the twitter library and set our authorization tokens. The consumer key and
consumer secret will be available on the Keys and Access Tokens tab on your Twitter app's
page. To get the access tokens, you'll need to click on the Create my access token button,
which is on the same page. Enter the keys into the appropriate places in the following code:

We are going to get our tweets from Twitter's search function. We will create a reader that
connects to twitter using our authorization, and then use that reader to perform searches. In
the Notebook, we set the filename where the tweets will be stored:

Social Media Insight using Naive Bayes

[117]

Next, create an object that can read from Twitter. We create this object with our
authorization object that we set up earlier:

We then open our output file for writing. We open it for appending—this allows us to rerun
the script to obtain more tweets. We then use our Twitter connection to perform a search for
the word Python. We only want the statuses that are returned for our dataset. This code
takes the tweet, uses the json library to create a string representation using the dumps
function, and then writes it to the file. It then creates a blank line under the tweet so that we
can easily distinguish where one tweet starts and ends in our file:

In the preceding loop, we also perform a check to see whether there is text in the tweet or
not. Not all of the objects returned by twitter will be actual tweets (for example, some
responses will be actions to delete tweets). The key difference is the inclusion of text as a
key, which we test for. Running this for a few minutes will result in 100 tweets being added
to the output file.

You can keep re-running this script to add more tweets to your dataset,
keeping in mind that you may get some duplicates in the output file if you
rerun it too fast (that is before Twitter gets new tweets to return!). For our
initial experiment, 100 tweets will be enough, but you will probably want
to come back and rerun this code to get that up to about 1000.

Loading and classifying the dataset
After we have collected a set of tweets (our dataset), we need labels to perform
classification. We are going to label the dataset by setting up a form in a Jupyter Notebook
to allow us to enter the labels. We do this by loading the tweets we collected in the previous
section, iterating over them and providing (manually) a classification on whether they refer
to Python the programming language or not.

Social Media Insight using Naive Bayes

[118]

The dataset we have stored is nearly, but not quite, in a JSON format. JSON is a format for
data that doesn't impose much structure on the contents, just on the syntax. The idea behind
JSON is that the data is in a format directly readable in JavaScript (hence the name,
JavaScript Object Notation). JSON defines basic objects such as numbers, strings, lists, and
dictionaries, making it a good format for storing datasets, if they contain data that isn't
numerical. If your dataset is fully numerical, you would save space and time using a
matrix-based format like in NumPy.

A key difference between our dataset and real JSON is that we included
newlines between tweets. The reason for this was to allow us to easily
append new tweets (the actual JSON format doesn't allow this easily). Our
format is a JSON representation of a Tweet, followed by a newline,
followed by the next Tweet, and so on.

To parse it, we can use the json library but we will have to first split the file by newlines to
get the actual tweet objects themselves. Set up a new Jupyter Notebook, I called mine
ch6_label_twitter. Within it, we will first load the data from our input filename by iterating
over the file, storing tweets as we loop. The code below does a basic check that there is
actual text in the tweet. If it does, we use the json library to load the tweet and then we add
it to a list:

We are now interested in manually classifying whether an item is relevant to us or not (in
this case, relevant means refers to the programming language Python). We will use the
Jupyter Notebook's ability to embed HTML and talk between JavaScript and Python to
create a viewer of tweets to allow us to easily and quickly classify the tweets as spam or not.
The code will present a new tweet to the user (you) and ask for a label: is it relevant or not? It
will then store the input and present the next tweet to be labeled.

Social Media Insight using Naive Bayes

[119]

First, we create a list for storing the labels. These labels will be stored whether or not the
given tweet refers to the programming language Python, and it will allow our classifier to
learn how to differentiate between meanings.

We also check if we have any labels already and load them. This helps if you need to close
the notebook down midway through labeling. This code will load the labels from where
you left off. It is generally a good idea to consider how to save at midpoints for tasks like
this. Nothing hurts quite like losing an hour of work because your computer crashed before
you saved the labels! The code to do this loading follows:

The first time you run this, nothing will happen. After manually classifying some examples
you can save your progress and then close the Notebook. After that, you can reopen the
Notebook and return to where you were up to.

If you make one or two mistakes classifying, don't worry too much. If you
make lots of mistakes and want to start again, delete just
python_classes.json and the above code will pick up with an empty set of
classifications. If you need to delete all of your data and start again with
new tweets, make sure to delete (or move) both files - python_tweets.json
and python_classes.json. Otherwise, this Notebook will get confused,
giving classes from the old dataset to the new tweets.

Next, we create a simple function that will return the next tweet that needs to be labeled.
We can work out which is the next tweet by finding the first one that hasn't yet been
labeled. The code is pretty straight-forward. We determine how many tweets we have
labeled (with), and get the next tweet in the tweet_sample list:

The next step in our experiment is to collect information from the user (you!) on which
tweets are referring to Python (the programming language) and which are not.

As of yet, there is not a good, straightforward way to get interactive
feedback with pure Python in Jupyter Notebooks for such a large number
of text documents. For this reason, we will use some JavaScript and HTML
to get this input from the user. There are many ways to do this, below is
just one example.

Social Media Insight using Naive Bayes

[120]

To get the feedback, we need a JavaScript component to load the next tweet and show it.
We also need a HTML component to create the HTML elements to display that tweet. I
won't go into the details of the code here, except to give this general workflow:

Obtain the next tweet that needs to be classified with 1.
Show it to the user with 2.
Wait for the user to press either 0 or 1 with 3.
Store that result in the classes list with 4.

This keeps happening until we reach the end of the list (at which point an IndexError
occurs, indicating we have no more tweets to classify). The code is below (remember that
you can get the code from Packt or from the official GitHub repository):

Social Media Insight using Naive Bayes

[121]

You will need to enter all of this code into a single cell (or copy it from the code bundle). It
contains the mix of HTML and JavaScript necessary to get input from you to manually
classify the tweets. If you need to stop or save your progress, run the following code in the
next cell. It will save your progress (and doesn't interrupt the above HTML code either,
which can be left running):

Creating a replicable dataset from Twitter
In data mining, there are lots of variables. These aren't the parameters of the data mining
algorithms - they are the methods of data collection, how the environment is set up, and
many other factors. Being able to replicate your results is important as it enables you to
verify or improve upon your results.

Getting 80 percent accuracy on one dataset with algorithm X, and 90 percent accuracy on
another dataset with algorithm Y doesn't mean that Y is better. We need to be able to test on
the same dataset in the same conditions to be able to properly compare. With running the
preceding code, you will get a different dataset to the one I created and used. The main
reasons are that Twitter will return different search results for you than me based on the
time you performed the search.

Even after that, your labeling of tweets might be different from what I do. While there are
obvious examples where a given tweet relates to the python programming language, there
will always be gray areas where the labeling isn't obvious. One tough gray area I ran into
was tweets in non-English languages that I couldn't read. In this specific instance, there are
options in Twitter's API for setting the language, but even these aren't going to be perfect.

Social Media Insight using Naive Bayes

[122]

Due to these factors, it is difficult to replicate experiments on databases that are extracted
from social media, and Twitter is no exception. Twitter explicitly disallows sharing datasets
directly. One solution to this is to share tweet IDs only, which you can share freely. In this
section, we will first create a tweet ID dataset that we can freely share. Then, we will see
how to download the original tweets from this file to recreate the original dataset. First, we
save the replicable dataset of tweet IDs.

After creating another new Jupyter Notebook, first set up the filenames as before. This is
done in the same way we did labeling but there is a new filename where we can store the
replicable dataset. The code is as follows:

We load the tweets and labels as we did in the previous notebook:

Now we create a dataset by looping over both the tweets and labels at the same time and
saving those in a list. An important side-effect of this code is, by putting labels first in the
zip function, it will only load enough tweets for the labels we have created. In other words,
you can run this code on partially classified data:

Finally, we save the results in our file:

Social Media Insight using Naive Bayes

[123]

Now that we have the Tweet IDs and labels saved, we can recreate the original dataset. If
you are looking to recreate the dataset I used for this chapter, it can be found in the code
bundle that comes with this book. Loading the preceding dataset is not difficult but it can
take some time.

Start a new Jupyter Notebook and set the dataset, label, and tweet ID filenames as before.
I've adjusted the filenames here to ensure that you don't overwrite your previously
collected dataset, but feel free to change these if you do want to override.

The code is as follows:

Next, load the tweet IDs from the file using JSON:

Saving the labels is very easy. We just iterate through this dataset and extract the IDs. We
could do this quite easily with just two lines of code (open file and save tweets). However,
we can't guarantee that we will get all the tweets we are after (for example, some may have
been changed to private since collecting the dataset) and therefore the labels will be
incorrectly indexed against the data. As an example, I tried to recreate the dataset just one
day after collecting them and already two of the tweets were missing (they might be deleted
or made private by the user). For this reason, it is important to only print out the labels that
we need.

To do this, we first create an empty actual labels list to store the labels for tweets that we
actually recover from twitter, and then create a dictionary mapping the tweet IDs to the
labels. The code is as follows:

Social Media Insight using Naive Bayes

[124]

Next, we are going to create a twitter server to collect all of these tweets. This is going to
take a little longer. Import the twitter library that we used before, creating an authorization
token and using that to create the twitter object:

Next, we will loop through each of the tweet ids, and ask twitter to recover the original
tweet. A good feature of twitter's API is that we can ask for 100 tweets at a time, drastically
reducing the number of API calls. Interestingly, from twitter's point of view, it is the same
number of calls to get one tweet or 100 tweets, as long as its a single request.

The following code will loop through our tweets in groups of 100, join together the id
values, and get the tweet information for each of them.

In this code, we then check each tweet to see if it is a valid tweet and then save it to our file
if it is. Our final step is to save our resulting labels:

Social Media Insight using Naive Bayes

[125]

Text transformers
Now that we have our dataset, how are we going to perform data mining on it?

Text-based datasets include books, essays, websites, manuscripts, programming code, and
other forms of written expression. All of the algorithms we have seen so far deal with
numerical or categorical features, so how do we convert our text into a format that the
algorithm can deal with? There are a number of measurements that could be taken.

For instance, average word and average sentence length are used to predict the readability
of a document. However, there are lots of feature types such as word occurrence which we
will now investigate.

Bag-of-words models
One of the simplest but highly effective models is to simply count each word in the dataset.
We create a matrix, where each row represents a document in our dataset and each column
represents a word. The value of the cell is the frequency of that word in the document. This
is known as the bag-of-words model.

Here's an excerpt from The Lord of the Rings, J.R.R. Tolkien:

Three Rings for the Elven-kings under the sky,

Seven for the Dwarf-lords in halls of stone, Nine for Mortal Men, doomed to die,

One for the Dark Lord on his dark throne In the Land of Mordor where the Shadows lie.

One Ring to rule them all, One Ring to find them,

One Ring to bring them all and in the darkness bind them.

 - J.R.R. Tolkien's epigraph to The Lord of The Rings

The word the appears nine times in this quote, while the words in, for, to, and one each
appear four times. The word ring appears three times, as does the word of.

Social Media Insight using Naive Bayes

[126]

We can create a dataset from this, choosing a subset of words and counting the frequency:

Word the one ring to

Frequency 9 4 3 4

To do this for all words in a single document, we can use the Counter class. When counting
words, it is normal to convert all letters to lowercase, which we do when creating the string.
The code is as follows:

Printing gives the list of the top five most frequently occurring words.
Ties are not handled well as only five are given and a very large number of words all share
a tie for fifth place.

The bag-of-words model has three major types, with many variations and alterations.

The first is to use the raw frequencies, as shown in the preceding example. This
has the same drawback as any non-normalised data - words with high variance
due to high overall values (such as) the overshadow lower frequency (and
therefore lower-variance) words, even though the presence of the word the rarely
has much importance.
The second model is to use the normalized frequency, where each document's
sum equals 1. This is a much better solution as the length of the document doesn't
matter as much, but it still means words like the overshadow lower frequency
words. The third type is to simply use binary features—a value is 1 if it occurs,
and 0 otherwise. We will use binary representation in this chapter.
Another (arguably more popular) method for performing normalization is called
term frequency-inverse document frequency (tf-idf). In this weighting scheme,
term counts are first normalized to frequencies and then divided by the number
of documents in which it appears in the corpus. We will use tf-idf in ,
Clustering News Articles.

Social Media Insight using Naive Bayes

[127]

n-gram features
One variation on the standard bag-of-words model is called the n-gram model. An n-grams
model addresses the deficiency of context in the bag-of-words model. With a bag-of-words
model, only individual words are counted by themselves. This means that common word
pairs, such as United States, lose meaning they have in the sentence because they are treated
as individual words.

There are algorithms that can read a sentence, parse it into a tree-like structure, and use this
to create very accurate representations of the meaning behind words. Unfortunately, these
algorithms are computationally expensive. This makes it difficult to apply them to large
datasets.

To compensate for these issues of context and complexity, the n-grams model fits into the
middle ground. It has more context than the bag-of-words model, while only being slightly
more expensive computationally.

An n-gram is a subsequence of n consecutive, overlapping, tokens. In this experiment, we
use word n-grams, which are n-grams of word-tokens. They are counted the same way as a
bag-of-words, with the n-grams forming a word that is put in the bag. The value of a cell in
this dataset is the frequency that a particular n-gram appears in the given document.

The value of n is a parameter. For English, setting it to between 2 to 5 is a
good start, although some applications call for higher values. Higher
values for n result in sparse datasets, as when n increases it is less likely to
have the same n-gram appear across multiple documents. Having n=1
results in simply the bag-of-words model.

As an example, , we extract the first few n-grams in the following quote:

Always look on the bright side of life.

The first n-gram (of size 3) is Always look on, the second is look on the, the third is on the
bright. As you can see, the n-grams overlap and cover three words each. Word n-grams have
advantages over using single words. This simple concept introduces some context to word
use by considering its local environment, without a large overhead of understanding the
language computationally.

Social Media Insight using Naive Bayes

[128]

A disadvantage of using n-grams is that the matrix becomes even sparser—word n-grams
are unlikely to appear twice (especially in tweets and other short documents!). Specifically
for social media and other short documents, word n-grams are unlikely to appear in too
many different tweets, unless it is a retweet. However, in larger documents, word n-grams
are quite effective for many applications. Another form of n-gram for text documents is that
of a character n-gram. That said, you'll see shortly that word n-grams are quite effective in
practice.

Rather than using sets of words, we simply use sets of characters (although character n-
grams have lots of options for how they are computed!). This type of model can help
identify words that are misspelled, as well as providing other benefits to classification. We
will test character n-grams in this chapter and see them again in , Authorship
Attribution.

Other text features
There are other features that can be extracted too. These include syntactic features, such as
the usage of particular words in sentences. Part-of-speech tags are also popular for data
mining applications that need to understand meaning in text. Such feature types won't be
covered in this book. If you are interested in learning more, I recommend Python 3 Text
Processing with NLTK 3 Cookbook, Jacob Perkins, Packt publication.

There are a number of libraries for working with text data in Python. The most commonly
known one is called the Natural Language ToolKit (NLTK). The scikit-learn library also
has the CountVectorizer class that performs a similar action, and it is recommended you
take a look at it (we will use it in , Authorship Attribution). NLTK has more
features for word tokenization and part of speech tagging (that is identifying which words
are nouns, verbs and so on).

The library we are going to use is called spaCy. It is designed from the ground up to be fast
and reliable for natural language processing. Its less-well-known than NLTK, but is rapidly
growing in popularity. It also simplifies some of the decisions, but has a slightly more
difficult syntax to use, compared to NLTK.

For production systems, I recommend using spaCy, which is faster than
NLTK. NLTK was built for teaching, while spaCy was built for
production. They have different syntaxes, meaning it can be difficult to
port code from one library to another. If you aren't looking into
experimenting with different types of natural language parsers, I
recommend using spaCy.

Social Media Insight using Naive Bayes

[129]

Naive Bayes
Naive Bayes is a probabilistic model that is, unsurprisingly, built upon a naive
interpretation of Bayesian statistics. Despite the naive aspect, the method performs very
well in a large number of contexts. Because of the naive aspect, it works quite quickly. It can
be used for classification of many different feature types and formats, but we will focus on
one in this chapter: binary features in the bag-of-words model.

Understanding Bayes' theorem
For most of us, when we were taught statistics, we started from a frequentist approach. In
this approach, we assume the data comes from some distribution and we aim to determine
what the parameters are for that distribution. However, those parameters are (perhaps
incorrectly) assumed to be fixed. We use our model to describe the data, even testing to
ensure the data fits our model.

Bayesian statistics instead model how people (at least, non-frequentist statisticians) actually
reason. We have some data, and we use that data to update our model about how likely
something is to occur. In Bayesian statistics, we use the data to describe the model rather
than using a model and confirming it with data (as per the frequentist approach).

It should be noted that frequentist statistics and Bayesian statistics ask and answer slightly
different questions. A direct comparison is not always correct.

Bayes' theorem computes the value of P(A|B). That is, knowing that B has occurred, what is
the probability of event A occurring. In most cases, B is an observed event such as it rained
yesterday, and A is a prediction it will rain today. For data mining, B is usually we observed
this sample and A is does the sample belong to this class (the class prediction). We will see how
to use Bayes' theorem for data mining in the next section.

The equation for Bayes' theorem is given as follows:

As an example, we want to determine the probability that an e-mail containing the word
drugs is spam (as we believe that such a tweet may be a pharmaceutical spam).

Social Media Insight using Naive Bayes

[130]

A, in this context, is the probability that this tweet is spam. We can compute P(A), called the
prior belief directly from a training data by computing the percentage of tweets in our
dataset that are spam. If our dataset contains 30 spam messages for every 100 e-mails, P(A)
is 30/100 or 0.3.

B, in this context, is this tweet contains the word drugs. Likewise, we can compute P(B) by
computing the percentage of tweets in our dataset containing the word drugs. If 10 e-mails
in every 100 of our training dataset contain the word drugs, P(B) is 10/100 or 0.1. Note that
we don't care if the e-mail is spam or not when computing this value.

P(B|A) is the probability that an e-mail contains the word drugs if it is spam. This is also
easy to compute from our training dataset. We look through our training set for spam e-
mails and compute the percentage of them that contain the word drugs. Of our 30 spam e-
mails, if 6 contain the word drugs, then P(B|A) is calculated as 6/30 or 0.2.

From here, we use Bayes' theorem to compute P(A|B), which is the probability that a tweet
containing the word drugs is spam. Using the previous equation, we see the result is 0.6.
This indicates that if an e-mail has the word drugs in it, there is a 60 percent chance that it is
spam.

Note the empirical nature of the preceding example—we use evidence
directly from our training dataset, not from some preconceived
distribution. In contrast, a frequentist view of this would rely on us
creating a distribution of the probability of words in tweets to compute
similar equations.

Naive Bayes algorithm
Looking back at our Bayes' theorem equation, we can use it to compute the probability that
a given sample belongs to a given class. This allows the equation to be used as a
classification algorithm.

With C as a given class and D as a sample in our dataset, we create the elements necessary
for Bayes' theorem, and subsequently Naive Bayes. Naive Bayes is a classification algorithm
that utilizes Bayes' theorem to compute the probability that a new data sample belongs to a
particular class.

P(D) is the probability of a given data sample. It can be difficult to compute this, as the
sample is a complex interaction between different features, but luckily it is constant across
all classes. Therefore, we don't need to compute it at all, as all we do in the final step is
compare relative values.

Social Media Insight using Naive Bayes

[131]

P(D|C) is the probability of the data point belonging to the class. This could also be difficult
to compute due to the different features. However, this is where we introduce the naive
part of the Naive Bayes algorithm. We naively assume that each feature is independent of
each other. Rather than computing the full probability of P(D|C), we compute the
probability of each feature D1, D2, D3, ... and so on. Then, we just multiply them together:

P(D|C) = P(D1|C) x P(D2|C).... x P(Dn|C)

Each of these values is relatively easy to compute with binary features; we simply compute
the percentage of times it is equal in our sample dataset.

In contrast, if we were to perform a non-naive Bayes version of this part,
we would need to compute the correlations between different features for
each class. Such computation is infeasible at best, and nearly impossible
without vast amounts of data or adequate language analysis models.

From here, the algorithm is straightforward. We compute P(C|D) for each possible class,
ignoring the P(D) term entirely. Then we choose the class with the highest probability. As
the P(D) term is consistent across each of the classes, ignoring it has no impact on the final
prediction.

How it works
As an example, suppose we have the following (binary) feature values from a sample in our
dataset: [0, 0, 0, 1].

Our training dataset contains two classes with 75 percent of samples belonging to the class
0, and 25 percent belonging to the class 1. The likelihood of the feature values for each class
are as follows:

For class 0: [0.3, 0.4, 0.4, 0.7]

For class 1: [0.7, 0.3, 0.4, 0.9]

These values are to be interpreted as: for feature 1, it has a value of 1 in 30 percent of cases
for samples with class 0. It is a value of 1 in 70 percent of samples with class 1.

Social Media Insight using Naive Bayes

[132]

We can now compute the probability that this sample should belong to the class 0. P(C=0) =
0.75 which is the probability that the class is 0. Again, P(D) isn't needed for the Naive Bayes
algorithm and is simply removed from the equation. Let's take a look at the calculation:

The second and third values are 0.6, because the value of that feature in
the sample was 0. The listed probabilities are for values of 1 for each
feature. Therefore, the probability of a 0 is its inverse: P(0) = 1 – P(1).

Now, we can compute the probability of the data point belonging to this class. Let's take a
look at the calculation:

Now, we compute the same values for the class 1:

Normally, P(C=0|D) + P(C=1|D) should equal to 1. After all, those are the
only two possible options! However, the probabilities are not 1 due to the
fact we haven't included the computation of P(D) in our equations here.

As the value for P(C=1|D) is more than P(C=0|D), the data point should be classified as
belonging to the class 1. You may have guessed this while going through the equations
anyway; however, you may have been a bit surprised that the final decision was so close.
After all, the probabilities in computing P(D|C) were much, much higher for the class 1.
This is because we introduced a prior belief that most samples generally belong to the class
0.

If the classes had been equal sizes, the resulting probabilities would be much different. Try
it yourself by changing both P(C=0) and P(C=1) to 0.5 for equal class sizes and computing
the result again.

Social Media Insight using Naive Bayes

[133]

Applying of Naive Bayes
We will now create a pipeline that takes a tweet and determines whether it is relevant or
not, based only on the content of that tweet.

To perform the word extraction, we will be using the spaCy, a library that contains a large
number of tools for performing analysis on natural language. We will use spaCy in future
chapters as well.

To get spaCy on your computer, use pip to install the package: pip install
spacy
If that doesn't work, see the spaCy installation instructions at

 for information specific to your platform.

We are going to create a pipeline to extract the word features and classify the tweets using
Naive Bayes. Our pipeline has the following steps:

Transform the original text documents into a dictionary of counts using spaCy's
word tokenization.
Transform those dictionaries into a vector matrix using the DictVectorizer
transformer in scikit-learn. This is necessary to enable the Naive Bayes classifier
to read the feature values extracted in the first step.
Train the Naive Bayes classifier, as we have seen in previous chapters.

We will need to create another Notebook (last one for the chapter!) called
 for performing the classification.

Extracting word counts
We are going to use spaCy to extract our word counts. We still want to use it in a pipeline,
but spaCy doesn't conform to our transformer interface. We will need to create a basic
transformer to do this to obtain both fit and transform methods, enabling us to use this in a
pipeline.

First, set up the transformer class. We don't need to fit anything in this class, as this
transformer simply extracts the words in the document. Therefore, our fit is an empty
function, except that it returns self which is necessary for transformer objects to conform to
the scikit-learn API.

Social Media Insight using Naive Bayes

[134]

Our transform is a little more complicated. We want to extract each word from each
document and record True if it was discovered. We are only using the binary features
here—True if in the document, False otherwise. If we wanted to use the frequency we
would set up counting dictionaries, as we have done in several of the past chapters.

Let's take a look at the code:

The result is a list of dictionaries, where the first dictionary is the list of words in the first
tweet, and so on. Each dictionary has a word as key and the value True to indicate this
word was discovered. Any word not in the dictionary will be assumed to have not occurred
in the tweet. Explicitly stating that a word's occurrence is False will also work, but will take
up needless space to store.

Converting dictionaries to a matrix
The next step converts the dictionaries built as per the previous step into a matrix that can
be used with a classifier. This step is made quite simple through the DictVectorizer
transformer that is provided as part of scikit-learn.

Social Media Insight using Naive Bayes

[135]

The class simply takes a list of dictionaries and converts them into a
matrix. The features in this matrix are the keys in each of the dictionaries, and the values
correspond to the occurrence of those features in each sample. Dictionaries are easy to
create in code, but many data algorithm implementations prefer matrices. This makes

 a very useful class.

In our dataset, each dictionary has words as keys and only occurs if the word actually
occurs in the tweet. Therefore, our matrix will have each word as a feature and a value of
True in the cell if the word occurred in the tweet.

To use , simply import it using the following command:

Putting it all together
Finally, we need to set up a classifier and we are using Naive Bayes for this chapter. As our
dataset contains only binary features, we use the classifier that is designed
for binary features. As a classifier, it is very easy to use. As with , we
simply import it and add it to our pipeline:

Now comes the moment to put all of these pieces together. In our Jupyter Notebook, set the
filenames and load the dataset and classes as we have done before. Set the filenames for
both the tweets themselves (not the IDs!) and the labels that we assigned to them. The code
is as follows:

Load the tweets themselves. We are only interested in the content of the tweets, so we
extract the text value and store only that. The code is as follows:

Social Media Insight using Naive Bayes

[136]

Now, create a pipeline putting together the components from before. Our pipeline has three
parts:

The NLTKBOW transformer we created.1.
A DictVectorizer transformer.2.
A BernoulliNB classifier.3.

The code is as follows:

We can nearly run our pipeline now, which we will do with as we have
done many times before. Before we perform the data mining, we will introduce a better
evaluation metric than the accuracy metric we used before. As we will see, the use of
accuracy is not adequate for datasets when the number of samples in each class is different.

Evaluation using the F1-score
When choosing an evaluation metric, it is always important to consider
cases where that evaluation metric is not useful. Accuracy is a good
evaluation metric in many cases, as it is easy to understand and simple to
compute. However, it can be easily faked. In other words, in many cases,
you can create algorithms that have a high accuracy but have a poor
utility.

While our dataset of tweets (typically, your results may vary) contains about 50 percent
programming-related and 50 percent nonprogramming, many datasets aren't as balanced as
this.

As an example, an e-mail spam filter may expect to see more than 80 percent of incoming e-
mails be spam. A spam filter that simply labels everything as spam is quite useless;
however, it will obtain an accuracy of 80 percent!

Social Media Insight using Naive Bayes

[137]

To get around this problem, we can use other evaluation metrics. One of the most
commonly employed is called an f1-score (also called f-score, f-measure, or one of many
other variations on this term).

The F1-score is defined on a per-class basis and is based on two concepts:
the precision and recall. The precision is the percentage of all the samples
that were predicted as belonging to a specific class, that were actually
from that class. The recall is the percentage of samples in the dataset that
are in a class and actually labeled as belonging to that class.

In the case of our application, we could compute the value for both classes (python-
programming and not python-programming).

Our precision computation becomes the question: of all the tweets that were predicted as being
relevant, what percentage were actually relevant?

Likewise, the recall becomes the question: of all the relevant tweets in the data set, how many
were predicted as being relevant?

After you compute both the precision and recall, the f1-score is the harmonic mean of the
precision and recall:

To use the f1-score in scikit-learn methods, simply set the scoring parameter to f1. By
default, this will return the f1-score of the class with label 1. Running the code on our
dataset, we simply use the following line of code:

The result is 0.684, which means we can accurately determine if a tweet using Python
relates to the programing language nearly 70 percent of the time. This is using a dataset
with only 300 tweets in it.

Go back and collect more data and you will find that the results increase! Keep in mind that
your dataset may differ, and therefore your results would too.

More data usually means a better accuracy, but it is not guaranteed!

Social Media Insight using Naive Bayes

[138]

Getting useful features from models
One question you may ask is, what are the best features for determining if a tweet is
relevant or not? We can extract this information from our Naive Bayes model and find out
which features are the best individually, according to Naive Bayes.

First, we fit a new model. While the gives us a score across different
folds of cross-validated testing data, it doesn't easily give us the trained models themselves.
To do this, we simply fit our pipeline with the tweets, creating a new model. The code is as
follows:

Note that we aren't really evaluating the model here, so we don't need to
be as careful with the training/testing split. However, before you put these
features into practice, you should evaluate on a separate test split. We skip
over that here for the sake of clarity.

A pipeline gives you access to the individual steps through the attribute and
the name of the step (we defined these names ourselves when we created the pipeline object
itself). For instance, we can get the Naive Bayes model:

From this model, we can extract the probabilities for each word. These are stored as log
probabilities, which is simply log(P(A|f)), where f is a given feature.

The reason these are stored as log probabilities is because the actual values are very low.
For instance, the first value is -3.486, which correlates to a probability under 0.03 percent.
Logarithm probabilities are used in computation involving small probabilities like this as
they stop underflow errors where very small values are just rounded to zeros. Given that all
of the probabilities are multiplied together, a single value of 0 will result in the whole
answer always being 0! Regardless, the relationship between values is still the same; the
higher the value, the more useful that feature is.

We can get the most useful features by sorting the array of logarithm probabilities. We want
descending order, so we simply negate the values first. The code is as follows:

Social Media Insight using Naive Bayes

[139]

The preceding code will just give us the indices and not the actual feature values. This isn't
very useful, so we will map the feature's indices to the actual values. The key is the
DictVectorizer step of the pipeline, which created the matrices for us. Luckily this also
records the mapping, allowing us to find the feature names that correlate to different
columns. We can extract the features from that part of the pipeline:

From here, we can print out the names of the top features by looking them up in the
attribute of DictVectorizer. Enter the following lines into a new cell and

run it to print out a list of the top features:

The first few features include : RT, and even Python. These are likely to be noise (although
the use of a colon is not very common outside programming), based on the data we
collected. Collecting more data is critical to smoothing out these issues. Looking through
the list though, we get a number of more obvious programming features:

There are some others too that refer to Python in a work context, and therefore might be
referring to the programming language (although freelance snake handlers may also use
similar terms, they are less common on Twitter).

That last one is usually in the format: We're looking for a candidate for this job.

Looking through these features gives us quite a few benefits. We could train people to
recognize these tweets, look for commonalities (which give insight into a topic), or even get
rid of features that make no sense. For example, the word RT appears quite high in this list;
however, this is a common Twitter phrase for retweet (that is, forwarding on someone else's
tweet). An expert could decide to remove this word from the list, making the classifier less
prone to the noise we introduced by having a small dataset.

Social Media Insight using Naive Bayes

[140]

Summary
In this chapter, we looked at text mining—how to extract features from text, how to use
those features, and ways of extending those features. In doing this, we looked at putting a
tweet in context—was this tweet mentioning python referring to the programming
language? We downloaded data from a web-based API, getting tweets from the popular
microblogging website Twitter. This gave us a dataset that we labeled using a form we built
directly in the Jupyter Notebook.

We also looked at reproducibility of experiments. While Twitter doesn't allow you to send
copies of your data to others, it allows you to send the tweet's IDs. Using this, we created
code that saved the IDs and recreated most of the original dataset. Not all tweets were
returned; some had been deleted in the time since the ID list was created and the dataset
was reproduced.

We used a Naive Bayes classifier to perform our text classification. This is built upon the
Bayes' theorem that uses data to update the model, unlike the frequentist method that often
starts with the model first. This allows the model to incorporate and update new data, and
incorporate a prior belief. In addition, the naive part allows to easily compute the
frequencies without dealing with complex correlations between features.

The features we extracted were word occurrences—did this word occur in this tweet? This
model is called bag-of-words. While this discards information about where a word was
used, it still achieves a high accuracy on many datasets. This entire pipeline of using the
bag-of-words model with Naive Bayes is quite robust. You will find that it can achieve quite
good scores on most text-based tasks. It is a great baseline for you, before trying more
advanced models. As another advantage, the Naive Bayes classifier doesn't have any
parameters that need to be set (although there are some if you wish to do some tinkering).

To extend the work we did in this chapter, first start by collecting more data. You'll need to
manually classify these as well, but you'll find some similarities between tweets that might
make it easier. For example, there is a field of study called Locality Sensitive Hashes, that
determines whether two tweets are similar. Two similar tweets are likely about the same
topic. Another method for extending the research is to consider how you would build a
model that incorporates the twitter user's history into the equation - in other words, if the
user often tweets about python-as-a-programming-language, then they are more likely to be
using python in a future tweet.

In the next chapter, we will look at extracting features from another type of data, graphs, in
order to make recommendations on who to follow on social media.

77
Follow Recommendations

Using Graph Mining
Graphs can be used to represent a wide range of phenomena. This is particularly true for
online social networks, and the Internet of Things (IoT). Graph mining is big business,
with websites such as Facebook running on data analysis experiments performed on
graphs.

Social media websites are built upon engagement. Users without active news feeds, or
interesting friends to follow, do not engage with sites. In contrast, users with more
interesting friends and followees engage more, see more ads. This leads to larger revenue
streams for the website.

In this chapter, we look at how to define similarity on graphs, and how to use them within a
data mining context. Again, this is based on a model of the phenomena. We look at some
basic graph concepts, like sub-graphs and connected components. This leads to an
investigation of cluster analysis, which we delve more deeply into in ,
Clustering News Articles.

The topics covered in this chapter include:

Clustering data to find patterns
Loading datasets from previous experiments
Getting follower information from Twitter
Creating graphs and networks
Finding subgraphs for cluster analysis

Follow Recommendations Using Graph Mining

[142]

Loading the dataset
In this chapter, our task is to recommend users on online social networks based on shared
connections. Our logic is that if two users have the same friends, they are highly similar and
worth recommending to each other. We want our recommendations to be of high value. We
can only recommend so many people before it becomes tedious, therefore we need to find
recommendations that engage users.

To do this, we use the previous chapter's disambiguation model to find only users talking
about Python as a programming language. In this chapter, we use the results from one data
mining experiment as input into another data mining experiment. Once we have our
Python programmers selected, we then use their friendships to find clusters of users that
are highly similar to each other. The similarity between two users will be defined by how
many friends they have in common. Our intuition will be that the more friends two people
have in common, the more likely two people are to be friends (and therefore should be on
our social media platform).

We are going to create a small social graph from Twitter using the API we introduced in the
previous chapter. The data we are looking for is a subset of users interested in a similar
topic (again, the Python programming language) and a list of all of their friends (people
they follow). With this data, we will check how similar two users are, based on how many
friends they have in common.

There are many other online social networks apart from Twitter. The
reason we have chosen Twitter for this experiment is that their API makes
it quite easy to get this sort of information. The information is available
from other sites, such as Facebook, LinkedIn, and Instagram, as well.
However, getting this information is more difficult.

To start collecting data, set up a new Jupyter Notebook and an instance of the
connection, as we did in the previous chapter. You can reuse the app information from the
previous chapter or create a new one:

Follow Recommendations Using Graph Mining

[143]

Also, set up the filenames. You will want to use a different folder for this experiment from
the one you used in , Social Media Insight Using Naive Bayes, ensuring you do not
override your previous dataset!

Next, we will need a list of users. We will do a search for tweets, as we did in the previous
chapter, and look for those mentioning the word . First, create two lists for storing
the tweet's text and the corresponding users. We will need the user IDs later, so we create a
dictionary mapping that now. The code is as follows:

We will now perform a search for the word python, as we did in the previous chapter, and
iterate over the search results and only saving Tweets with text (as per the last chapter's
requirements):

Running this code will get about 100 tweets, maybe a little fewer in some cases. Not all of
them will be related to the programming language, though. We will address that by using
the model we trained in the previous chapter.

Classifying with an existing model
As we learned in the previous chapter, not all tweets that mention the word python are
going to be relating to the programming language. To do that, we will use the classifier we
used in the previous chapter to get tweets based on the programming language. Our
classifier wasn't perfect, but it will result in a better specialization than just doing the search
alone.

Follow Recommendations Using Graph Mining

[144]

In this case, we are only interested in users who are tweeting about Python, the
programming language. We will use our classifier from the last chapter to determine which
tweets are related to the programming language. From there, we will select only those users
who were tweeting about the programming language.

To do this part of our broader experiment, we first need to save the model from the
previous chapter. Open the Jupyter Notebook we made in the last chapter, the one in which
we built and trained the classifier.

If you have closed it, then the Jupyter Notebook won't remember what
you did, and you will need to run the cells again. To do this, click on the
Cell menu on the Notebook and choose Run All.

After all of the cells have computed, choose the final blank cell. If your Notebook doesn't
have a blank cell at the end, choose the last cell, select the Insert menu, and select the Insert
Cell Below option.

We are going to use the library to save our model and load it.

 is included with the package as a built-in external
package. No extra installation step needed! This library has tools for
saving and loading models, and also for simple parallel processing - which
is used in quite a lot.

First, import the library and create an output filename for our model (make sure the
directories exist, or else they won't be created). I've stored this model in my
directory, but you could choose to store them somewhere else. The code is as follows:

Next, we use the function in , which works much like the similarly named
version in the library. We pass the model itself and the output filename:

Running this code will save our model to the given filename. Next, go back to the new
Jupyter Notebook you created in the last subsection and load this model.

Follow Recommendations Using Graph Mining

[145]

You will need to set the model's filename again in this Notebook by copying the following
code:

Make sure the filename is the one you used just before to save the model. Next, we need to
recreate our BagOfWords class, as it was a custom-built class and can't be loaded directly by
joblib. Simply copy the entire BagOfWords class from the previous chapter's code,
including its dependencies:

In production, you would need to develop your custom transformers in
separate, centralized files, and import them into the Notebook instead.
This little hack simplifies the workflow, but feel free to experiment with
centralizing important code by creating a library of common functionality.

Loading the model now just requires a call to the function of :

Follow Recommendations Using Graph Mining

[146]

Our context_classifier works exactly like the model object of the notebook we saw in
, Social Media Insight Using Naive Bayes, It is an instance of a Pipeline, with the

same three steps as before (, , and a classifier).
Calling the predict function on this model gives us a prediction as to whether our tweets are
relevant to the programming language. The code is as follows:

The ith item in will be 1 if the ith tweet is (predicted to be) related to the
programming language, or else it will be 0. From here, we can get just the tweets that are
relevant and their relevant users:

Using my data, this comes up to 46 relevant users. A little lower than our 100 tweets/users
from before, but now we have a basis for building our social network. We can always add
more data to get more users, but 40+ users will be sufficient to go through this chapter as a
first pass. I recommend coming back, adding more data, and running the code again, to see
what results you obtain.

Getting follower information from Twitter
With our initial set of users, we now need to get the friends of each of these users. A friend
is a person whom the user is following. The API for this is called friends/ids, and it has both
good and bad points. The good news is that it returns up to 5,000 friend IDs in a single API
call. The bad news is that you can only make 15 calls every 15 minutes, which means it will
take you at least 1 minute per user to get all followers—more if they have more than 5,000
friends (which happens more often than you may think).

The code is similar to the code from our previous API usage (obtaining tweets). We will
package it as a function, as we will use this code in the next two sections. Our function takes
a twitter user's ID value, and returns their friends. While it may be surprising to some,
many Twitter users have more than 5,000 friends. Due to this we will need to use Twitter's
pagination function, which lets Twitter return multiple pages of data through separate API
calls. When you ask Twitter for information, it gives you your information along with a
cursor, which is an integer that Twitter uses to track your request. If there is no more
information, this cursor is 0; otherwise, you can use the supplied cursor to get the next page
of results. Passing this cursor lets twitter continue your query, returning the next set of data
to you.

Follow Recommendations Using Graph Mining

[147]

In the function, we keep looping while this cursor is not equal to 0 (as, when it is, there is no
more data to collect). We then perform a request for the user's followers and add them to
our list. We do this in a try block, as there are possible errors that can happen that we can
handle. The follower's IDs are stored in the ids key of the results dictionary. After obtaining
that information, we update the cursor. It will be used in the next iteration of the loop.
Finally, we check if we have more than 10,000 friends. If so, we break out of the loop. The
code is as follows:

It is worth inserting a warning here. We are dealing with data from the
Internet, which means weird things can and do happen regularly. A
problem I ran into when developing this code was that some users have
many, many, many thousands of friends. As a fix for this issue, we will
put a failsafe here, exiting the function if we reach more than 10,000 users.
If you want to collect the full dataset, you can remove these lines, but
beware that it may get stuck on a particular user for a very long time.

Follow Recommendations Using Graph Mining

[148]

Much of the above function is error handling, as quite a lot can go wrong when dealing
with external APIs!

The most likely error that can happen is if we accidentally reach our API limit (while we
have a sleep to stop that, it can occur if you stop and run your code before this sleep
finishes). In this case, results is and our code will fail with a . In this case,
we wait for 5 minutes and try again, hoping that we have reached our next 15-minute
window. There may be another that occurs at this time. If one of them does, we
raise it and will need to handle it separately.

The second error that can happen occurs at Twitter's end, such as asking for a user that
doesn't exist or some other data-based error, resulting in a (which is a
similar concept to a HTTP 404 error). In this case, don't try this user anymore, and just
return any followers we did get (which, in this case, is likely to be 0).

Finally, Twitter only lets us ask for follower information 15 times every 15 minutes, so we
will wait for 1 minute before continuing. We do this in a finally block so that it happens
even if an error occurs.

Building the network
Now we are going to build our network of users, where users are linked if the two users
follow each other. The aim of building this network is to give us a data structure we can use
to segment our list of users into groups. From these groups, we can then recommend people
in the same group to each other. Starting with our original users, we will get the friends for
each of them and store them in a dictionary. Using this concept we can grow the graph
outwards from an initial set of users.

Starting with our original users, we will get the friends for each of them and store them in a
dictionary (after obtaining the user's ID from our user_id dictionary):

Follow Recommendations Using Graph Mining

[149]

Next, we are going to remove any user who doesn't have any friends. For these users, we
can't really make a recommendation in this way. Instead, we might have to look at their
content or people who follow them. We will leave that out of the scope of this chapter,
though, so let's just remove these users. The code is as follows:

We now have between 30 and 50 users, depending on your initial search results. We are
now going to increase that amount to 150. The following code will take quite a long time to
run—given the limits on the API, we can only get the friends for a user once every minute.
Simple math will tell us that 150 users will take 150 minutes, which is at least 2 hours and 30
minutes. Given the time we are going to be spending on getting this data, it pays to ensure
we get only good users.

What makes a good user, though? Given that we will be looking to make recommendations
based on shared connections, we will search for users based on shared connections. We will
get the friends of our existing users, starting with those users who are better connected to
our existing users. To do that, we maintain a count of all the times a user is in one of our
friend's lists. It is worth considering the goals of the application when considering your
sampling strategy. For this purpose, getting lots of similar users enables the
recommendations to be more regularly applicable.

To do this, we simply iterate over all the friend lists we have and then count each time a
friend occurs.

Computing our current friend count, we can then get the most connected (that is, most
friends from our existing list) person from our sample. The code is as follows:

Follow Recommendations Using Graph Mining

[150]

From here, we set up a loop that continues until we have the friends of 150 users. We then
iterate over all of our best friends (which happens in order of the number of people who
have them as friends) until we find a user we have not yet checked. We then get the friends
of that user and update the counts. Finally, we work out who is the most
connected user who we haven't already got in our list:

The codes will then loop and continue until we reach 150 users.

You may want to set these values lower, such as 40 or 50 users (or even
just skip this bit of code temporarily). Then, complete the chapter's code
and get a feel for how the results work. After that, reset the number of
users in this loop to 150, leave the code to run for a few hours, and then
come back and rerun the later code.

Given that collecting that data probably took nearly 3 hours, it would be a good idea to save
it in case we have to turn our computer off. Using the library, we can easily save our
friends dictionary to a file:

If you need to load the file, use the function:

Follow Recommendations Using Graph Mining

[151]

Creating a graph
At this point in our experiment, we have a list of users and their friends. This gives us a
graph where some users are friends of other users (although not necessarily the other way
around).

A graph is a set of nodes and edges. Nodes are usually objects of interest - in this case, they
are our users. The edges in this initial graph indicate that user A is a friend of user B. We
call this a directed graph, as the order of the nodes matters. Just because user A is a friend
of user B, that doesn't imply that user B is a friend of user A. The example network below
shows this, along with a user C who is friends of user B, and is friended in turn by user B as
well:

In python, one of the best libraries for working with graphs, including creating, visualising
and computing, is called NetworkX.

Once again, you can use Anaconda to install NetworkX:

First, we create a directed graph using NetworkX. By convention, when importing
NetworkX, we use the abbreviation nx (although this isn't necessary). The code is as
follows:

We will only visualize our key users, not all of the friends (as there are many thousands of
these and it is hard to visualize). We get our main users and then add them to our graph as
nodes:

Follow Recommendations Using Graph Mining

[152]

Next we set up the edges. We create an edge from a user to another user if the second user
is a friend of the first user. To do this, we iterate through all of the friends of a given user.
We ensure that the friend is one of our main users (as we currently aren't interested in
visualizing the other users), and add the edge if they are.

We can now visualize the network using NetworkX's draw function, which uses matplotlib.
To get the image in our notebook, we use the inline function on matplotlib and then call the
draw function. The code is as follows:

The results are a bit hard to make sense of; they show just the ring of nodes, and its hard to
work anything specific out about the dataset. Not a good image at all:

We can make the graph a bit better by using pyplot to handle the creation of the figure,
which is used by NetworkX to do graph drawing. Import create a larger figure,
and then call NetworkX's function to increase the size of the image:

Follow Recommendations Using Graph Mining

[153]

By making the graph bigger and adding transparency, an outline of how the graph appears
can now be seen:

In my graph, there was a major group of users all highly connected to each other, and most
other users didn't have many connections at all. As you can see, it is very well connected in
the center!

This is actually a property of our method of choosing new users—we choose those who are
already well linked in our graph, so it is likely they will just make this group larger. For
social networks, generally the number of connections a user has follows a power law. A
small percentage of users have many connections, and others have only a few. The shape of
the graph is often described as having a long tail.

By zooming into parts of the graph you can start seeing structure. Visualizing and
analyzing graphs like this is hard - we will see some tools for making this process easier in
the next section.

Creating a similarity graph
The final step to this experiment is to recommend users, based on how many friends they
share. As mentioned previously, our logic is that, if two users have the same friends, they
are highly similar. We could recommend one user to the other on this basis.

We are therefore going to take our existing graph (which has edges relating to friendship)
and create a new graph from its information. The nodes are still users, but the edges are
going to be weighted edges. A weighted edge is simply an edge with a weight property.
The logic is that a higher weight indicates more similarity between the two nodes than a
lower weight. This is context-dependent. If the weights represent distance, then the lower
weights indicate more similarity.

Follow Recommendations Using Graph Mining

[154]

For our application, the weight will be the similarity of the two users connected by that
edge (based on the number of friends they share). This graph also has the property that it is
not directed. This is due to our similarity computation, where the similarity of user A to
user B is the same as the similarity of user B to user A.

Other similarity measurements are directed. An example is ratio of similar
users, which is the number of friends in common divided by the user's
total number of friends. In this case, you would need a directed graph.

There are many ways to compute the similarity between two lists like this. For example, we
could compute the number of friends the two have in common. However, this measure is
always going to be higher for people with more friends. Instead, we can normalize it by
dividing by the total number of distinct friends the two have. This is called the Jaccard
Similarity.

The Jaccard Similarity, always between 0 and 1, represents the percentage overlap of the
two. As we saw in , Classifying with scikit-learn Estimators, normalization is an
important part of data mining exercises and generally a good thing to do. There are fringe
cases where you wouldn't normalize data, but by default normalize first.

To compute the Jaccard similarity, we divide the intersection of the two sets of followers by
the union of the two. These are set operations and we have lists, so we will need to convert
the friends lists to sets first. The code is as follows:

We then create a function that computes the similarity of two sets of friends lists. The code
is as follows:

We add 1e-6 (or 0.000001) to the similarity above to ensure we never get a
division by zero error, in cases where neither user has any friends. It is
small enough to not really affect our results, but big enough to be more
than zero.

From here, we can create our weighted graph of the similarity between users. We will use
this quite a lot in the rest of the chapter, so we will create a function to perform this action.
Let's take a look at the threshold parameter:

Follow Recommendations Using Graph Mining

[155]

We can now create a graph by calling this function. We start with no threshold, which
means all links are created. The code is as follows:

The result is a very strongly connected graph—all nodes have edges, although many of
those will have a weight of 0. We will see the weight of the edges by drawing the graph
with line widths relative to the weight of the edge—thicker lines indicate higher weights.

Due to the number of nodes, it makes sense to make the figure larger to get a clearer sense
of the connections:

We are going to draw the edges with a weight, so we need to draw the nodes first.
NetworkX uses layouts to determine where to put the nodes and edges, based on certain
criteria. Visualizing networks is a very difficult problem, especially as the number of nodes
grows. Various techniques exist for visualizing networks, but the degree to which they
work depends heavily on your dataset, personal preferences, and the aim of the
visualization. I found that the spring_layout worked quite well, but other options such as
circular_layout (which is a good default if nothing else works), random_layout,
shell_layout, and spectral_layout also exist and have uses where the others may fail.

Visit for more
details on layouts in NetworkX. Although it adds some complexity, the

 option works quite well and is worth investigating for
better visualizations. It is well worth considering in real-world uses.

Let's use for visualization:

Follow Recommendations Using Graph Mining

[156]

Using our layout, we can then position the nodes:

Next, we draw the edges. To get the weights, we iterate over the edges in the graph (in a
specific order) and collect the weights:

We then draw the edges:

The result will depend on your data, but it will typically show a graph with a large set of
nodes connected quite strongly and a few nodes poorly connected to the rest of the
network.

The difference in this graph compared to the previous graph is that the edges determine the
similarity between the nodes based on our similarity metric and not on whether one is a
friend of another (although there are similarities between the two!). We can now start
extracting information from this graph in order to make our recommendations.

Follow Recommendations Using Graph Mining

[157]

Finding subgraphs
From our similarity function, we could simply rank the results for each user, returning the
most similar user as a recommendation - as we did with our product recommendations.
This works, and is indeed one way to perform this type of analysis.

Instead, we might want to find clusters of users that are all similar to each other. We could
advise these users to start a group, create advertising targeting this segment, or even just
use those clusters to do the recommendations themselves. Finding these clusters of similar
users is a task called cluster analysis.

Cluster analysis is a difficult task, with complications that classification
tasks do not typically have. For example, evaluating classification results is
relatively easy - we compare our results to the ground truth (from our
training set) and see what percentage we got right. With cluster analysis,
though, there isn't typically a ground truth. Evaluation usually comes
down to seeing if the clusters make sense, based on some preconceived
notion we have of what the cluster should look like.

Another complication with cluster analysis is that the model can't be trained against the
expected result to learn—it has to use some approximation based on a mathematical model
of a cluster, not what the user is hoping to achieve from the analysis.

Due to these issues, cluster analysis is more of an exploratory tool, rather than a prediction
tool. Some research and applications use clustering for analysis, but its usefulness as a
predictive model is dependent on an analyst selecting parameters and finding graphs that
look right, rather than a specific evaluation metric.

Connected components
One of the simplest methods for clustering is to find the connected components in a graph.
A connected component is a set of nodes in a graph that are connected via edges. Not all
nodes need to be connected to each other to be a connected component. However, for two
nodes to be in the same connected component, there needs to be a way to travel from one
node to another in that connected component by moving along edges.

Connected components do not consider edge weights when being
computed; they only check for the presence of an edge. For that reason, the
code that follows will remove any edge with a low weight.

Follow Recommendations Using Graph Mining

[158]

NetworkX has a function for computing connected components that we can call on our
graph. First, we create a new graph using our function, but this time we
pass a threshold of 0.1 to get only those edges that have a weight of at least 0.1, indicative of
10% of followers in common between the two node users:

We then use NetworkX to find the connected components in the graph:

To get a sense of the sizes of the graph, we can iterate over the groups and print out some
basic information:

The results will tell you how big each of the connected components is. My results had one
large subgraph of 62 users and lots of little ones with a dozen or fewer users.

We can alter the threshold to alter the connected components. This is because a higher
threshold has fewer edges connecting nodes, and therefore will have smaller connected
components and more of them. We can see this by running the preceding code with a
higher threshold:

The preceding code gives us much smaller subgraphs and more of them. My largest cluster
was broken into at least three parts and none of the clusters had more than 10 users. An
example cluster is shown in the following figure, and the connections within this cluster are
also shown. Note that, as it is a connected component, there were no edges from nodes in
this component to other nodes in the graph (at least, with the threshold set at 0.25).

Follow Recommendations Using Graph Mining

[159]

We can draw the entire graph, showing each connected component in a different color. As
these connected components are not connected to each other, it actually makes little sense to
plot these on a single graph. This is because the positioning of the nodes and components is
arbitrary, and it can confuse the visualization. Instead, we can plot each separately on a
separate subfigure.

In a new cell, obtain the connected components and also the count of the connected
components:

 is a generator, not a list of the connected components. For
this reason, use to find out how
many connected components there are; don't use , as it doesn't work
due to the way that NetworkX stores this information. This is why we
need to recompute the connected components here.

Create a new pyplot figure and give enough room to show all of our connected
components. For this reason, we allow the graph to increase in size with the number of
connected components.

Next, iterate over each connected component and add a subplot for each. The parameters to
add_subplot are the number of rows of subplots, the number of columns, and the index of
the subplot we are interested in. My visualization uses three columns, but you can try other
values instead of three (just remember to change both values):

Follow Recommendations Using Graph Mining

[160]

The results visualize each connected component, giving us a sense of the number of nodes
in each and also how connected they are.

If you are not seeing anything on your graphs, try rerunning the line:

The object is a generator and is "consumed" after being used.

Follow Recommendations Using Graph Mining

[161]

Optimizing criteria
Our algorithm for finding these connected components relies on the threshold parameter,
which dictates whether edges are added to the graph or not. In turn, this directly dictates
how many connected components we discover and how big they are. From here, we
probably want to settle on some notion of which is the best threshold to use. This is a very
subjective problem, and there is no definitive answer. This is a major problem with any
cluster analysis task.

We can, however, determine what we think a good solution should look like and define a
metric based on that idea. As a general rule, we usually want a solution where:

Samples in the same cluster (connected components) are highly similar to each
other
Samples in different clusters are highly dissimilar to each other

The Silhouette Coefficient is a metric that quantifies these points. Given a single sample,
we define the Silhouette Coefficient as follows:

Where a is the intra-cluster distance or the average distance to the other samples in the
sample's cluster, and b is the inter-cluster distance or the average distance to the other
samples in the next-nearest cluster.

To compute the overall Silhouette Coefficient, we take the mean of the
Silhouette Coefficients for each sample. A clustering that provides a
Silhouette Coefficient close to the maximum of 1 has clusters that have
samples all similar to each other, and these clusters are very spread apart.
Values near 0 indicate that the clusters all overlap and there is little
distinction between clusters. Values close to the minimum of -1 indicate
that samples are probably in the wrong cluster, that is, they would be
better off in other clusters.

Follow Recommendations Using Graph Mining

[162]

Using this metric, we want to find a solution (that is, a value for the threshold) that
maximizes the Silhouette Coefficient by altering the threshold parameter. To do that, we
create a function that takes the threshold as a parameter and computes the Silhouette
Coefficient.

We then pass this into the optimize module of SciPy, which contains the function
that is used to find the minimum value of a function by altering one of the parameters.
While we are interested in maximizing the Silhouette Coefficient, SciPy doesn't have a
maximize function. Instead, we minimize the inverse of the Silhouette (which is basically
the same thing).

The scikit-learn library has a function for computing the Silhouette Coefficient,
; however, it doesn't fix the function format that is

required by the SciPy minimize function. The minimize function requires the variable
parameter to be first (in our case, the threshold value), and any arguments to be after it. In
our case, we need to pass the friends dictionary as an argument in order to compute the
graph.

The Silhouette Coefficient is not defined unless there are at least two
nodes (in order for distance to be computed at all). In this case, we define
the problem scope as invalid. There are a few ways to handle this, but the
easiest is to return a very poor score. In our case, the minimum value that
the Silhouette Coefficient can take is -1, and we will return -99 to indicate
an invalid problem. Any valid solution will score higher than this.

The function below incorporates all of these issues giving us a function that takes a
threshold value and a friends list, and computes the Silhouette Coefficient. It does this by
building a matrix from the graph using NetworkX's function.

Follow Recommendations Using Graph Mining

[163]

For evaluating sparse datasets, I recommend that you look into V-Measure
or Adjusted Mutual Information. These are both implemented in scikit-
learn, but they have very different parameters for performing their
evaluation.

The Silhouette Coefficient implementation in scikit-learn, at the time of writing, doesn't
support sparse matrices. For this reason, we need to call the function. Typically,
this is a bad idea--sparse matrices are usually used because the data typically shouldn't be
in a dense format. In this case, it will be fine because our dataset is relatively small;
however, don't try this for larger datasets.

We have two forms of inversion happening here. The first is taking the
inverse of the similarity to compute a distance function; this is needed, as
the Silhouette Coefficient only accepts distances. The second is the
inverting of the Silhouette Coefficient score so that we can minimize with
SciPy's optimize module.

Finally, we create the function that we will minimize. This function is the inverse of the
 function, because we want lower scores to be better. We could do

this in our function--I've separated them here to clarify the different
steps involved.

This function creates a new function from an original function. When the new function is
called, all of the same arguments and keywords are passed onto the original function and
the return value is returned, except that this returned value is negated before it is returned.

Now we can do our actual optimization. We call the minimize function on the inverted
 function we defined:

This function will take quite a while to run. Our graph creation function
isn't that fast, nor is the function that computes the Silhouette Coefficient.
Decreasing the parameter's value will result in fewer iterations
being performed, but we run the risk of finding a suboptimal solution.

Follow Recommendations Using Graph Mining

[164]

Running this function, I got a threshold of 0.135 that returns 10 components. The score
returned by the minimize function was -0.192. However, we must remember that we
negated this value. This means our score was actually 0.192. The value is positive, which
indicates that the clusters tend to be better separated than not (a good thing). We could run
other models and check whether it results in a better score, which means that the clusters
are better separated.

We could use this result to recommend users—if a user is in a specific connected
component, then we can recommend other users in that same component. This
recommendation follows our use of the Jaccard Similarity to find good connections between
users, our use of connected components to split them up into clusters, and our use of the
optimization technique to find the best model in this setting.

However, a large number of users may not be connected at all, so we will use a different
algorithm to find clusters for them. We will see other methods for cluster analysis in

, Clustering News Articles.

Summary
In this chapter, we looked at graphs from social networks and how to do cluster analysis on
them. We also looked at saving and loading models from scikit-learn by using the
classification model we created in , Social Media Insight Using Naive Bayes.

We created a graph of friends from the social network Twitter. We then examined how
similar two users were, based on their friends. Users with more friends in common were
considered more similar, although we normalize this by considering the overall number of
friends they have. This is a commonly used way to infer knowledge (such as age or general
topic of discussion) based on similar users. We can use this logic for recommending users to
others—if they follow user X and user Y is similar to user X, they will probably like user Y.
This is, in many ways, similar to our transaction-led similarity of previous chapters.

The aim of this analysis was to recommend users, and our use of cluster analysis allowed us
to find clusters of similar users. To do this, we found connected components on a weighted
graph we created based on this similarity metric. We used the NetworkX package for
creating graphs, using our graphs, and finding these connected components.

Follow Recommendations Using Graph Mining

[165]

We then used the Silhouette Coefficient, which is a metric that evaluates how good a
clustering solution is. Higher scores indicate a better clustering, according to the concepts of
intracluster and intercluster distance. SciPy's optimize module was used to find the solution
that maximizes this value.

In this chapter, we saw a few opposites in action. Similarity is a measure between two
objects, where higher values indicate more similarity between those objects. In contrast,
distance is a measure where lower values indicate more similarity. Another contrast we saw
was a loss function, where lower scores are considered better (that is, we lost less). Its
opposite is the score function, where higher scores are considered better.

To extend the work in this chapter, examine the V-measure and Adjusted Mutual
Information scores in scikit-learn. These replace the Silhouette Coefficient used in this
chapter. Are the clusters that result from maximizing these metrics better than the
Silhouette Coefficient's clusters? Further, how can you tell? Often, the problem with cluster
analysis is that you cannot objectively tell and may use human intervention to choose the
best option.

In the next chapter, we will see how to extract features from another new type of data--
images. We will discuss how to use neural networks to identify numbers in images and
develop a program to automatically beat CAPTCHA images.

88
Beating CAPTCHAs with Neural

Networks
Images pose interesting and difficult challenges for data miners. Until recently, only small
amounts of progress were made with analyzing images for extracting information.
However recently, such as with the progress made on self-driving cars, significant advances
have been made in a very short time-frame. The latest research is providing algorithms that
can understand images for commercial surveillance, self-driving vehicles, and person
identification.

There is lots of raw data in an image, and the standard method for encoding images - pixels
- isn't that informative by itself. Images and photos can be blurry, too close to the targets,
too dark, too light, scaled, cropped, skewed, or any other of a variety of problems that cause
havoc for a computer system trying to extract useful information. Neural networks can
combine these lower level features into higher level patterns that are more able to
generalize and deal with these issues.

In this chapter, we look at extracting text data from images by using neural networks for
predicting each letter in the CAPTCHA. CAPTCHAs are images designed to be easy for
humans to solve and hard for a computer to solve, as per the acronym: Completely
Automated Public Turing test to tell Computers and Humans Apart. Many websites use
them for registration and commenting systems to stop automated programs flooding their
site with fake accounts and spam comments.

These tests help stop programs (bots) using websites, such as a bot intent on automatically
signing up new people to a website. We play the part of such a spammer, trying to get
around a CAPTCHA-protected system for posting messages to an online forum. The
website is protected by a CAPTCHA, meaning we can't post unless we pass the test.

Beating CAPTCHAs with Neural Networks

[167]

The topics covered in this chapter include:

Neural networks
Creating our own dataset of CAPTCHAs and letters
The scikit-image library for working with image data
Extracting basic features from images
Using neural networks for larger-scale classification tasks
Improving performance using postprocessing
Artificial neural networks

Artificial neural networks
Neural networks are a class of algorithm that was originally designed based on the way that
human brains work. However, modern advances are generally based on mathematics rather
than biological insights. A neural network is a collection of neurons that are connected
together. Each neuron is a simple function of its inputs, which are combined using some
function to generate an output:

The functions that define a neuron's processing can be any standard function, such as a
linear combination of the inputs, and is called the activation function. For the commonly
used learning algorithms to work, we need the activation function to be derivable and
smooth. A frequently used activation function is the logistic function, which is defined by
the following equation (k is often simply 1, x is the inputs into the neuron, and L is normally
1, that is, the maximum value of the function):

Beating CAPTCHAs with Neural Networks

[168]

The value of this graph, from -6 to +6, is shown below. The red lines indicate that the value
is 0.5 when x is zero, but the function quickly climbs to 1.0 as x increases, and quickly drops
to -1.0 when x decreases.

Each individual neuron receives its inputs and then computes the output based on these
values. Neural networks can be considered as a collection of these neurons connected
together, and they can be very powerful for data mining applications. The combinations of
these neurons, how they fit together, and how they combine to learn a model are one of the
most powerful concepts in machine learning.

An introduction to neural networks
For data mining applications, the arrangement of neurons is usually in layers. The first
layer is called the input layer and takes its input from samples in the data. The outputs of
each of these neurons are computed and then passed along to the neurons in the next layer.
This is called a feed-forward neural network. We will refer to these simply as neural
networks for this chapter, as they are the most common type used and the only type used
in this chapter. There are other types of neural networks too that are used for different
applications. We will see another type of network in , Object Detection in Images
Using Deep Neural Networks.

Beating CAPTCHAs with Neural Networks

[169]

The outputs of one layer become the inputs of the next layer, continuing until we reach the
final layer: the output layer. These outputs represent the predictions of the neural network
as the classification. Any layer of neurons between the input layer and the output layer is
referred to as a hidden layer, as they learn a representation of the data not intuitively
interpretable by humans. Most neural networks have at least three layers, although most
modern applications use networks with many more layers than that.

Typically, we consider fully connected layers. The outputs of each neuron in a layer go to all
neurons in the next layer. While we do define a fully connected network, many of the
weights will be set to zero during the training process, effectively removing these links.
Additionally, many of these weights might retain very small values, even after training.

In addition to being one of the conceptually simpler forms for neural networks, fully
connected neural networks are also simpler and more efficient to program than other
connection patterns.

See , Object Detection in images using Deep Neural Networks, for
an investigation into different types of neural networks, including layers
built specifically for image processing.

As the function of the neurons is normally the logistic function, and the neurons are fully
connected to the next layer, the parameters for building and training a neural network must
be other factors.

The first factor for neural networks is in the building phase: the size and shape of
the neural network. This includes how many layers the neural network has and
how many neurons it has in each hidden layer (the size of the input and output
layers is usually dictated by the dataset).

Beating CAPTCHAs with Neural Networks

[170]

The second parameter for neural networks is determined in the training phase:
the weight of the connections between neurons. When one neuron connects to
another, this connection has an associated weight that is multiplied by the signal
(the output of the first neuron). If the connection has a weight of 0.8, the neuron is
activated, and it outputs a value of 1, the resulting input to the next neuron is 0.8.
If the first neuron is not activated and has a value of 0, this stays at 0.

The combination of an appropriately sized network and well-trained weights determines
how accurate the neural network can be when making classifications. The word
appropriately in the previous sentence also doesn't necessarily mean bigger, as neural
networks that are too large can take a long time to train and can more easily over-fit the
training data.

Weights can be set randomly to start with but are then updated during the
training phase. Setting weights to zero is normally not a good idea, as all
neurons in the network act similarly to begin with! Having randomly set
weights gives each neuron a different role in the learning process that can
be improved with training.

A neural network in this configuration is a classifier that can then be used to predict the
target of a data sample based on the inputs, much like the classification algorithms we have
used in previous chapters. But first, we need a dataset to train and test with.

Neural networks are, by a margin, the biggest area of advancement in data
mining in recent years. This might make you think: Why bother learning any
other type of classification algorithm? While neural networks are state of the
art in pretty much every domain (at least, right now), the reason to learn
other classifiers is that neural networks often require larger amounts of
data to work well, and they take a long time to learn. If you don't have big
data, you will probably get better results from another algorithm.

Creating the dataset
In this chapter, to spice up things a little, let us take on the role of the bad guy. We want to
create a program that can beat CAPTCHAs, allowing our comment spam program to
advertise on someone's website. It should be noted that our CAPTCHAs will be a little
easier than those used on the web today and that spamming isn't a very nice thing to do.

Beating CAPTCHAs with Neural Networks

[171]

We play the bad guy today, but please don't use this against real world
sites. One reason to "play the bad guy" is to help improve the security of
our website, by looking for issues with it.

Our experiment will simplify a CAPTCHA to be individual English words of four letters
only, as shown in the following image:

Our goal will be to create a program that can recover the word from images like this. To do
this, we will use four steps:

Break the image into individual letters.1.
Classify each individual letter.2.
Recombine the letters to form a word.3.
Rank words with a dictionary to try to fix errors.4.

Our CAPTCHA-busting algorithm will make the following assumptions.
First, the word will be a whole and valid four-character English word (in
fact, we use the same dictionary for creating and busting CAPTCHAs).
Second, the word will only contain uppercase letters. No symbols,
numbers, or spaces will be used.

We are going to make the problem slightly harder than simply identifying letters, by
performing a shear transform to the text, along with varying rates of shearing and scaling.

Drawing basic CAPTCHAs
Before we can start classifying CAPTCHAs, we first need a dataset to learn from. In this
section, we will be generating our own data to perform the data mining on.

Beating CAPTCHAs with Neural Networks

[172]

In more real-world applications, you'll be wanting to use an existing
CAPTCHA service to generate the data, but for our purposes in this
chapter, our own data will be sufficient. One of the issues that can arise is
that we code in our assumptions around how the data works when we
create the dataset ourselves, and then carry those same assumptions over
to our data mining training.

Our goal here is to draw an image with a word on it, along with a shear transform. We are
going to use the PIL library to draw our CAPTCHAs and the library to
perform the shear transform. The library can read images in a NumPy array
format that PIL can export to, allowing us to use both libraries.

Both PIL and scikit-image can be installed via Anaconda. However, I
recommend getting PIL through its replacement called pillow:
conda install pillow scikit-image

First, we import the necessary libraries and modules. We import NumPy and the Image
drawing functions as follows:

Then we create our base function for generating CAPTCHAs. This function takes a word
and a shear value (which is normally between 0 and 0.5) to return an image in a NumPy
array format. We allow the user to set the size of the resulting image, as we will use this
function for single-letter training samples as well:

Beating CAPTCHAs with Neural Networks

[173]

In this function, we create a new image using L for the format, which means black-and-
white pixels only, and create an instance of the class. This allows us to draw on
this image using PIL. We then load the font, draw the text, and perform a
shear transform on it.

You can get the Coval font I used from the Open Font Library at:

Download the file and extract the file into the
same directory as your Notebook.

From here, we can now generate images quite easily and use to display them. First,
we use our inline display for the matplotlib graphs and import . The code is as
follows:

The result is the image shown at the start of this section: our CAPTCHA. Here are some
other examples with different shear and scale values:

Beating CAPTCHAs with Neural Networks

[174]

Here is a variant scaled to sized. While it looks similar to the BONE image above, note
the x-axis and y-axis values are larger:

Splitting the image into individual letters
Our CAPTCHAs are words. Instead of building a classifier that can identify the thousands
and thousands of possible words, we will break the problem down into a smaller problem:
predicting letters.

Our experiment is in English, and all uppercase, meaning we have 26
classes to predict from for each letter. If you try these experiments in other
languages, keep in mind the number of output classes will have to change.

Beating CAPTCHAs with Neural Networks

[175]

The first step in our algorithm for beating these CAPTCHAs involves segmenting the word
to discover each of the letters within it. To do this, we are going to create a function that
finds contiguous sections of black pixels in the image and extract them as subimages. These
are (or at least should be) our letters. The function has tools for performing
these operations.

Our function will take an image, and return a list of sub-images, where each sub-image is a
letter from the original word in the image. The first thing we need to do is to detect where
each letter is. To do this, we will use the label function in , which finds
connected sets of pixels that have the same value. This has analogies to our connected
component discovery in , Follow Recommendations Using Graph Mining.

We can then get the subimages from the example CAPTCHA using this function:

We can also view each of these subimages:

Beating CAPTCHAs with Neural Networks

[176]

The result will look something like this:

As you can see, our image segmentation does a reasonable job, but the results are still quite
messy, with bits of previous letters showing. This is fine, and almost preferable. While
training on data with regular noise makes our training worse, training on data with random
noise can actually make it better. One reason is that the underlying data mining model
learns the important aspects, namely the non-noise parts instead of specific noise inherent
in the training data set. It is a fine line between too much and too little noise, and this can be
hard to properly model. Testing on validation sets is a good way to ensure your training is
improving.

One important note is that this code is not consistent in finding letters. Lower shear values
typically result in accurately segmented images. For example, here is the code to segment
the WOOF example from above:

Beating CAPTCHAs with Neural Networks

[177]

In contrast, higher shear values are not segmented properly. For example, here is the BARK
example from before:

Notice the large overlap caused by the square segmentation. One suggestion for an
improvement on this chapter's code is to improve our segmentation by finding non-square
segments.

Creating a training dataset
Using the functions we have already defined, we can now create a dataset of letters, each
with different shear values. From this, we will train a neural network to recognize each
letter from the image.

We first set up our random state and an array that holds the options for letters, shear values
and scale values that we will randomly select from. There isn't much surprise here, but if
you haven't used NumPy's function before, it is similar to Python's
function—except this one works with NumPy arrays and allows the step to be a float. The
code is as follows:

Beating CAPTCHAs with Neural Networks

[178]

We then create a function (for generating a single sample in our training dataset) that
randomly selects a letter, a shear value, and a scale value selected from the available
options.

We return the image of the letter, along with the target value representing the letter in the
image. Our classes will be 0 for A, 1 for B, 2 for C, and so on.

Outside the function block, we can now call this code to generate a new sample and then
show it using :

The resulting image has just a single letter, with a random shear and random scale value.

Beating CAPTCHAs with Neural Networks

[179]

We can now generate all of our data by calling this several thousand times. We then put the
data into NumPy arrays, as they are easier to work with than lists. The code is as follows:

Our targets are integer values between 0 and 26, with each representing a letter of the
alphabet. Neural networks don't usually support multiple values from a single neuron,
instead preferring to have multiple outputs, each with values 0 or 1. We perform one-hot-
encoding of the targets, giving us a target array that has 26 outputs per sample, using
values near 1 if that letter is likely and near 0 otherwise. The code is as follows:

From this output, we know that our neural network's output layer will have 26 neurons.
The goal of the neural network is to determine which of these neurons to fire, based on a
given input--the pixels that compose the image.

The library we are going to use doesn't support sparse arrays, so we need to turn our sparse
matrix into a dense NumPy array. The code is as follows:

Finally, we perform a train/test split to later evaluate our data:

Training and classifying
We are now going to build a neural network that will take an image as input and try to
predict which (single) letter is in the image.

Beating CAPTCHAs with Neural Networks

[180]

We will use the training set of single letters we created earlier. The dataset itself is quite
simple. We have a 20-by-20-pixel image, each pixel 1 (black) or 0 (white). These represent
the 400 features that we will use as inputs into the neural network. The outputs will be 26
values between 0 and 1, where higher values indicate a higher likelihood that the associated
letter (the first neuron is A, the second is B, and so on) is the letter represented by the input
image.

We are going to use the scikit-learn's for our neural network in this
chapter.

You will need a recent version of to use MLPClassifier. If
the below import statement fails, try again after updating scikit-learn. You
can do this using the following Anaconda command:

As for other classifiers, we import the model type and create a new one. The
constructor below specifies that we create one hidden layer with 100 nodes in it. The size of
the input and output layers is determined at training time:

To see the internal parameters of the neural network, we can use the
function. This function exists on all models. Here is the output from the
above model. Many of these parameters can improve training or the speed of training. For
example, increasing the learning rate will train the model faster, at the risk of missing
optimal values:

Beating CAPTCHAs with Neural Networks

[181]

Next, we fit our model using the standard scikit-learn interface:

Our model has now learned weights between each of the layers. We can view those weights
by examining , which is a list of NumPy arrays that join each of the layers. For
example, the weights between the input layer with 400 neurons (from each of our pixels) to
the hidden layer with 100 neurons (a parameter we set), can be obtained using

. In addition, the weights between the hidden layer and the output layer
(with 26 neurons) can be obtained using . These weights, together with the
parameters above, wholly define our trained network.

We can now use that trained network to predict our test dataset:

Finally, we evaluate the results:

The result is 0.96, which is pretty impressive. This version of the F1 score is based on the
macro-average, which computes the individual F1 score for each class, and then averages
them without considering the size of each class.

To examine these individual class results, we can view the classification report:

The results from my experiment are shown here:

Beating CAPTCHAs with Neural Networks

[182]

The final for this report is shown on the bottom right, the second last number -
0.99. This is the micro-average, where the is computed for each sample and then
the mean is computed. This form makes more sense for relatively similar class sizes, while
the macro-average makes more sense for imbalanced classes.

Pretty simple from an API perspective, as hides all of the complexity.
However what actually happened in the backend? How do we train a neural network?

Back-propagation
Training a neural network is specifically focused on the following things.

The first is the size and shape of the network - how many layers, what sized
layers and what error functions they use. While types of neural networks exists
that can alter their size and shape, the most common type, a feed-forward neural
network, rarely has this capability. Instead, its size is fixed at initialization time,
which in this chapter is 400 neurons in the first layer, 100 in the hidden layer and
26 in the final layer. Training for the shape is usually the job of a meta-algorithm
that trains a set of neural networks and determines which is the most effective,
outside of training the networks themselves.

Beating CAPTCHAs with Neural Networks

[183]

The second part of training a neural network is to alter the weights between
neurons. In a standard neural network, nodes from one layer are attached to
nodes of the next layer by edges with a specific weight. These can be initialized
randomly (although several smarter methods do exist such as autoencoders), but
need to be adjusted to allow the network to learn the relationship between
training samples and training classes.

This adjusting of weights was one of the key issues holding back very-early neural
networks, before an algorithm called back propagation was developed to solve the issue.

The back propagation (backprop) algorithm is a way of assigning blame to each neuron for
incorrect predictions. First, we consider the usage of a neural network, where we feed a
sample into the input layer and see which of the output layer's neurons fire, as forward
propagation. Back propagation goes backwards from the output layer to the input layer,
assigning blame to each weight in the network, in proportion to the effect that weight has
on any errors that the network makes.

The amount of change is based on two aspects:

Neuron activation
The gradient of the activation function

The first is the degree to which the neuron was activated. Neurons that fire with high
(absolute) values are considered to have a great impact on the result, while those that fired
with small (absolute) values have a low impact on the result. Due to this, weights around
neurons that fire with high values are changed more than those around small values.

The second aspect to the amount that weights change is proportional to the gradient of the
activation function. Many neural networks you use will have the same activation function for
all neurons, but there are lots of situations where it makes sense to have different activation
functions for different layers of neurons (or more rarely, different activation functions in the
same layer). The gradient of the activation function, combined with the activation of the
neuron, and the error assigned to that neuron, together form the amount that the weights
are changed.

I've skipped over the maths involved in back propagation, as the focus of
this book is on practical usage. As you increase your usage of neural
networks, it pays to know more about what goes on inside the algorithm. I
recommend looking into the details of the back-prop algorithm, which can
be understood with some basic knowledge of gradients and derivatives.

Beating CAPTCHAs with Neural Networks

[184]

Predicting words
Now that we have a classifier for predicting individual letters, we now move onto the next
step in our plan - predicting words. To do this, we want to predict each letter from each of
these segments, and put those predictions together to form the predicted word from a given
CAPTCHA.

Our function will accept a CAPTCHA and the trained neural network, and it will return the
predicted word:

We can now test on a word using the following code. Try different words and see what
sorts of errors you get, but keep in mind that our neural network only knows about capital
letters:

We can codify this into a function, allowing us to perform predictions more easily:

Beating CAPTCHAs with Neural Networks

[185]

The returned results specify whether the prediction is correct, the original word, and the
predicted word. This code correctly predicts the word GENE, but makes mistakes with
other words. How accurate is it? To test, we will create a dataset with a whole bunch of
four-letter English words from NLTK. The code is as follows:

Install NLTK using Anaconda: conda install nltk
After installation, and before using it in code, you will need to download
the corpus using:
python -c "import nltk; nltk.download('words')"

The words instance here is actually a corpus object, so we need to call on it to
extract the individual words from this corpus. We also filter to get only four-letter words
from this list:

We can then iterate over all of the words to see how many we get correct by simply
counting the correct and incorrect predictions:

The results I get are 3,342 correct and 2,170 incorrect for an accuracy of just over 62 percent.
From our original 99 percent per-letter accuracy, this is a big decline. What happened?

Beating CAPTCHAs with Neural Networks

[186]

The reasons for this decline are listed here:

The first factor to impact is our accuracy. All other things being equal, if we have
four letters, and 99 percent accuracy per-letter, then we can expect about a 96
percent success rate (all other things being equal) getting four letters in a row
(0.994≈0.96). A single error in a single letter's prediction results in the wrong
word being predicted.
The second impact is the shear value. Our dataset chose randomly between shear
values of 0 to 0.5. The previous test used a shear of 0.2. For a value of 0, I get 75
percent accuracy; for a shear of 0.5, the result is much worse at 2.5 percent. The
higher the shear, the lower the performance.
The third impact is that often words are incorrectly segmented. Another issue is
that some vowels are commonly mistaken, causing more errors than can be
expected by the above error rates.

Let's examine the second of these issues, and map the relationship between shear and
performance. First, we turn our evaluation code into a function that is dependent on a given
shear value:

Then, we take a list of shear values and then use this function to evaluate the accuracy for
each value. Note that this code will take a while to run, approximately 30 minutes
depending on your hardware.

Beating CAPTCHAs with Neural Networks

[187]

Finally, plot the result using matplotlib:

You can see that there is a severe drop in performance as the shear value increases past 0.4.
Normalizing the input would help, with tasks such as image rotation and unshearing the
input.

Another surprising option to address issues with shear is to increase the
amount of training data with high shear values, which can lead to the
model learning a more generalized output.

We look into improving the accuracy using post-processing in the next section.

Beating CAPTCHAs with Neural Networks

[188]

Improving accuracy using a dictionary
Rather than just returning the given prediction, we can check whether the word actually
exists in our dictionary. If it does, then that is our prediction. If it isn't in the dictionary, we
can try and find a word that is similar to it and predict that instead. Note that this strategy
relies on our assumption that all CAPTCHA words will be valid English words, and
therefore this strategy wouldn't work for a random sequence of characters. This is one
reason why some CAPTCHAs don't use words.

There is one issue here—how do we determine the closest word? There are many ways to
do this. For instance, we can compare the lengths of words. Two words that have a similar
length could be considered more similar. However, we commonly consider words to be
similar if they have the same letters in the same positions. This is where the edit distance
comes in.

Ranking mechanisms for word similarity
The Levenshtein edit distance is a commonly used method for comparing two short strings
to see how similar they are. It isn't very scalable, so it isn't commonly used for very long
strings. The edit distance computes the number of steps it takes to go from one word to
another. The steps can be one of the following three actions:

Insert a new letter into the word at any position
Delete any letter from the word
Substitute a letter for another one

The minimum number of actions needed to transform the first word into the second is
given as the distance. Higher values indicate that the words are less similar.

This distance is available in NLTK as . We can call it using
only two strings and it returns the edit distance:

When used with different words, the edit distance is quite a good approximation to what
many people would intuitively feel are similar words. The edit distance is great for testing
spelling mistakes, dictation errors, and name matching (where you can mix up your Marc
and Mark spelling quite easily).

Beating CAPTCHAs with Neural Networks

[189]

However, it isn't very good for our case. We don't really expect letters to be moved around,
just individual letter comparisons to be wrong. For this reason, we will create a different
distance metric, which is simply the number of letters in the same positions that are
incorrect. The code is as follows:

We subtract the value from the length of the prediction word (which is four) to make it a
distance metric where lower values indicate more similarity between the words.

Putting it all together
We can now test our improved prediction function using similar code to before. First, we
define a prediction function, which also takes our list of valid words:

We compute the distance between our predicted word and each other word in
the dictionary, and sort it by distance (lowest first). The changes in our testing code are in
the following code:

Beating CAPTCHAs with Neural Networks

[190]

The preceding code will take a while to run (computing all of the distances will take some
time) but the net result is 3,037 samples correct and 2,476 samples incorrect. This is an
accuracy of 71.5 percent for a boost of nearly 10 percentage points!

Looking for a challenge? Update the function to return
the probabilities assigned to each letter. By default, the letter with the
highest probability is chosen for each letter in a word. If that doesn't work,
choose the next most probable word, by multiplying the per-letter
probabilities together.

Summary
In this chapter, we worked with images in order to use simple pixel values to predict the
letter being portrayed in a CAPTCHA. Our CAPTCHAs were a bit simplified; we only used
complete four-letter English words. In practice, the problem is much harder--as it should be!
With some improvements, it would be possible to solve much harder CAPTCHAs with
neural networks and a methodology similar to what we discussed. The
library contains lots of useful functions for extracting shapes from images, functions for
improving contrast, and other image tools that will help.

We took our larger problem of predicting words, and created a smaller and simple problem
of predicting letters. From here, we were able to create a feed-forward neural network to
accurately predict which letter was in the image. At this stage, our results were very good
with 97 percent accuracy.

Neural networks are simply connected sets of neurons, which are basic computation
devices consisting of a single function. However, when you connect these together, they can
solve incredibly complex problems. Neural networks are the basis for deep learning, which
is one of the most effective areas of data mining at the moment.

Beating CAPTCHAs with Neural Networks

[191]

Despite our great per-letter accuracy, the performance when predicting a word drops to just
over 60 percent when trying to predict a whole word. We improved our accuracy using a
dictionary, searching for the best matching word. To do this, we considered the commonly
used edit distance; however, we simplified it because we were only concerned with
individual mistakes on letters, not insertions or deletions. This improvement netted some
benefit, but there are still many improvements you could try to further boost the accuracy.

To take the concepts in this chapter further, investigate changing the neural network
structure, by adding more hidden layers, or changing the shape of those layers. Investigate
the impact this has on the result. Further, try creating a more difficult CAPTCHA--does this
drop the accuracy? Can you build a more complicated network to learn it?

Data mining problems such as the CAPTCHA example show that an initial problem
statement, such as guess this word, can be broken into individual subtasks that can be
performed using data mining. Further, those subtasks can be combined in a few different
ways, such as with the use of external information. In this chapter, we combined our letter
prediction with a dictionary of valid words to provide a final response, giving better
accuracy than letter prediction alone.

In the next chapter, we will continue with string comparisons. We will attempt to determine
which author (out of a set of authors) wrote a particular document--using only the content
and no other information!

99
Authorship Attribution

Authorship analysis is a text mining task that aims to identify certain aspects about an
author, based only on the content of their writings. This could include characteristics such
as age, gender, or background. In the specific authorship attribution task, we aim to
identify which of a set of authors wrote a particular document. This is a classic classification
task. In many ways, authorship analysis tasks are performed using standard data mining
methodologies, such as cross-fold validation, feature extraction, and classification
algorithms.

In this chapter, we will use the problem of authorship attribution to piece together the parts
of the data mining methodology we developed in the previous chapters. We identify the
problem and discuss the background and knowledge of the problem. This lets us choose
features to extract, which we will build a pipeline for achieving. We will test two different
types of features: function words and character n -grams. Finally, we will perform an in-
depth analysis of the results. We will work first with a dataset of books, and then a messy,
real-world corpus of e-mails.

The topics we will cover in this chapter are as follows:

Feature engineering and how feature choice differs based on application
Revisiting the bag-of-words model with a specific goal in mind
Feature types and the character n-grams model
Support Vector Machines
Cleaning up a messy dataset for data mining

Authorship Attribution

[193]

Attributing documents to authors
Authorship analysis has a background in stylometry, which is the study of an author's style
of writing. The concept is based on the idea that everyone learns language slightly
differently, and that measuring these nuances in people's writing will enable us to tell them
apart using only the content of their writing.

Authorship analysis has historically (pre-1990) been performed using repeatable manual
analysis and statistics, which is a good indication that it could be automated with data
mining. Modern authorship analysis studies are almost entirely data mining-based,
although quite a significant amount of work is still done with more manually driven
analysis using linguistic styles and stylometrics. Many of the advances in feature
engineering today are driven by advances in stylometrics. In other words, manual analysis
discovers new features, which are then codified and used as part of the data mining
process.

A key underlying feature of stylometry is that of writer invariants, which are features that a
particular author has in all of their documents, but are not shared with other authors. In
practice these writer invariants do not seem to exist, as authorship styles change over time,
but the use of data mining can get us close to classifiers working off this principle.

As a field, authorship analysis has many sub-problems, and the main ones are as follows:

Authorship profiling: This determines the age, gender, or other traits of the
author based on the writing. For example, we can detect the first language of a
person speaking English by looking for specific ways in which they speak the
language.
Authorship verification: This checks whether the author of this document also
wrote the other document. This problem is what you would normally think about
in a legal court setting. For instance, the suspect's writing style (content-wise)
would be analyzed to see if it matched the ransom note.
Authorship clustering: This is an extension of authorship verification, where we
use cluster analysis to group documents from a big set into clusters, and each
cluster is written by the same author.

However, the most common form of authorship analysis study is that of
authorship attribution, a classification task where we attempt to predict
which of a set of authors wrote a given document.

Authorship Attribution

[194]

Applications and use cases
Authorship analysis has a number of use cases. Many use cases are concerned with
problems such as verifying authorship, proving shared authorship/provenance, or linking
social media profiles with real-world users.

In a historical sense, we can use authorship analysis to verify whether certain documents
were indeed written by their supposed authors. Controversial authorship claims include
some of Shakespeare's plays, the Federalist papers from the USA's foundation period, and
other historical texts.

Authorship studies alone cannot prove authorship but can provide
evidence for or against a given theory, such as whether a particular person
wrote a given document.

For example, we can analyze Shakespeare's plays to determine his writing style, before
testing whether a given sonnet actually does originate from him (some recent research
indicates multiple authorship of some of his work).

A more modern use case is that of linking social network accounts. For example, a malicious
online user could set up accounts on multiple online social networks. Being able to link
them allows authorities to track down the user of a given account—for example if a person
is harassing other online users.

Another example used in the past is to be a backbone to provide expert testimony in court
to determine whether a given person wrote a document. For instance, the suspect could be
accused of writing an e-mail harassing another person. The use of authorship analysis could
determine whether it is likely that person did, in fact, write the document. Another court-
based use is to settle claims of stolen authorship. For example, two authors may claim to
have written a book, and authorship analysis could provide evidence on which is the more
likely author.

Authorship analysis is not foolproof, though. A recent study found that attributing
documents to authors can be made considerably harder by simply asking people, who are
otherwise untrained, to hide their writing style. This study also looked at a framing exercise
where people were asked to write in the style of another person. This framing of another
person proved quite reliable, with the faked document commonly attributed to the person
being framed.

Authorship Attribution

[195]

Despite these issues, authorship analysis is proving useful in a growing number of areas
and is an interesting data mining problem to investigate.

Authorship attribution can be used in expert testimony, but by itself is
hard to classify as hard evidence. Always check with a lawyer before
using it for formal matters, such as authorship disputes.

Authorship attribution
Authorship attribution (as distinct from authorship analysis) is a classification task by
which we have a set of candidate authors, a set of documents from each of those authors
namely the training set, and a set of documents of unknown authorship otherwise known
as the test set. If the documents of unknown authorship definitely belong to one of the
candidates, we call this a closed problem, as per the following diagram:

If we cannot be sure of that the actual author is part of the training set, we call this an open
problem. This distinction isn't just specific to authorship attribution - any data mining
application where the actual class may not be in the training set is considered an open
problem, with the task being to find the candidate author or to select none of them. This is
shown in the following diagram:

Authorship Attribution

[196]

In authorship attribution, we typically have two restrictions on the tasks. They have been
listed as follows:

First, we only use content information from the documents - not metadata
regarding the time of writing, delivery, handwriting style, and so on. There are
ways to combine models from these different types of information, but that isn't
generally considered authorship attribution and is more a data fusion
application.
The second restriction is that we don't look at the topic of the documents; instead,
we look for more salient features such as word usage, punctuation, and other
text-based features. The reasoning here is that a person can write on many
different topics, so worrying about the topic of their writing isn't going to model
their actual authorship style. Looking at topic words can also lead to overfitting
on the training data—our model may train on documents from the same author
and also on the same topic. For instance, if you were to model my authorship
style by looking at this book, you might conclude the words data mining are
indicative of my writing style when, in fact, I write on other topics as well.

From here, the pipeline for performing authorship attribution looks a lot like the one we
developed in , Social Media Insight Using Naive Bayes.

First, we extract features from our text.1.
Then, we perform some feature selection on those features.2.
Finally, we train a classification algorithm to fit a model, which we can then use3.
to predict the class (in this case, the author) of a document.

There are some differences between classifying content and classifying
authorship, mostly having to do with which features are used, that we will
cover in this chapter. It is critical to choose features based on the
application.

Before we delve into these issue, we will define the scope of the problem and collect some
data.

Authorship Attribution

[197]

Getting the data
The data we will use for the first part of this chapter is a set of books from Project
Gutenberg at , which is a repository of public domain literature works.
The books I used for these experiments come from a variety of authors:

Booth Tarkington (22 titles)
Charles Dickens (44 titles)
Edith Nesbit (10 titles)
Arthur Conan Doyle (51 titles)
Mark Twain (29 titles)
Sir Richard Francis Burton (11 titles)
Emile Gaboriau (10 titles)

Overall, there are 177 documents from 7 authors, giving a significant amount of text to work
with. A full list of the titles, along with download links and a script to automatically fetch
them, is given in the code bundle called getdata.py. If running the code results in
significantly fewer books than above, the mirror may be down. See this website for more
mirror URLs to try in the script:

To download these books, we use the requests library to download the files into our data
directory.

First, in a new Jupyter Notebook, set up the data directory and ensure the following code
links to it:

Next, download the data bundle from the code bundle supplied by Packt. Decompress the
file into this directory. The books folder should then directly contain one folder for each
author.

After taking a look at these files, you will see that many of them are quite messy—at least
from a data analysis point of view. There is a large project Gutenberg disclaimer at the start
of the files. This needs to be removed before we do our analysis.

Authorship Attribution

[198]

For example, most books begin with information such as the following:

The Project Gutenberg eBook of Mugby Junction, by Charles Dickens, et al, Illustrated by Jules A.
Goodman This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org
Title: Mugby Junction
Author: Charles Dickens
Release Date: January 28, 2009 [eBook #27924]Language: English
Character set encoding: UTF-8
START OF THE PROJECT GUTENBERG EBOOK MUGBY JUNCTION

After this point, the actual text of the book starts. The use of a line starting ***START OF
THE PROJECT GUTENBERG is fairly consistent, and we will use that as a cue on when
the text starts - anything before this line will be ignored.

We could alter the individual files on disk to remove this stuff. However, what happens if
we were to lose our data? We would lose our changes and potentially be unable to replicate
the study. For that reason, we will perform the preprocessing as we load the files—this
allows us to be sure our results will be replicable (as long as the data source stays the same).
The following code removes the main source of noise from the books, which is the prelude
that Project Gutenberg adds to the files:

You may want to add to this function to remove other sources of noise,
such as inconsistent formatting, footer information, and so on. Investigate
the files to examine what issues they have.

Authorship Attribution

[199]

We can now get our documents and classes using the following function, which loops
through these folders, loads the text documents and records a number assigned to the
author as the target class.

We then call this function to actually load the books:

This dataset fits into memory quite easily, so we can load all of the text at
once. In cases where the whole dataset doesn't fit, a better solution is to
extract the features from each document one-at-a-time (or in batches) and
save the resulting values to a file or in-memory matrix

To get a gauge on the properties of the data, one of the first things I usually do is create a
simple histogram of the document lengths. If the lengths are relatively consistent, this is
often easier to learn from than wildly different document lengths. In this case, there is quite
a large variance in document lengths. To view this, first we extract the lengths into a list:

Next, we plot those. Matplotlib has a function that will do this, as does Seaborn,
which produces nicer looking graphs by default.

Authorship Attribution

[200]

The resulting graph shows the variation in document lengths:

Using function words
One of the earliest types of features, and one that still works quite well for authorship
analysis, is to use function words in a bag-of-words model. Function words are words that
have little meaning on their own, but are required for creating (English!) sentences. For
example, the words this and which are words that are really only defined by what they do
within a sentence, rather than their meaning in themselves. Contrast this with a content
word such as tiger, which has an explicit meaning and invokes imagery of a large cat when
used in a sentence.

The set of words that are considered function words is not always obvious. A good rule of
thumb is to choose the most frequent words in usage (over all possible documents, not just
ones from the same author).

Authorship Attribution

[201]

Typically, the more frequently a word is used, the better it is for
authorship analysis. In contrast, the less frequently a word is used, the
better it is for content-based text mining, such as in the next chapter,
where we look at the topic of different documents.

The graph here gives a better idea between word and frequency relationship:

The use of function words is less defined by the content of the document and more by the
decisions made by the author. This makes them good candidates for separating the
authorship traits between different users. For instance, while many Americans are
particular about the different in usage between that and which in a sentence, people from
other countries, such as Australia, are less concerned with the distinction. This means that
some Australians will lean towards almost exclusively using one word or the other, while
others may use which much more.

This difference, combined with thousands of other nuanced differences, makes a model of
authorship.

Counting function words
We can count function words using the CountVectorizer class we used in , Social
Media Insight Using Naive Bayes. This class can be passed a vocabulary, which is the set of
words it will look for. If a vocabulary is not passed (we didn't pass one in the code of

, Social Media Insight Using Naive Bayes), then it will learn this vocabulary from the
training dataset. All the words are in the training set of documents (depending on the other
parameters of course).

Authorship Attribution

[202]

First, we set up our vocabulary of function words, which is just a list containing each of
them. Exactly which words are function words and which are not is up for debate. I've
found the following list, from published research, to be quite good, obtained from my own
research combining word lists from other researchers. Remember that the code bundle is
available from Packt publishing (or the official github channel), and therefore you don't
need to type this out:

Authorship Attribution

[203]

Now, we can set up an extractor to get the counts of these function words. Note the passing
of the function words list as the into the initialiser.

For this set of function words, the frequency within these documents is very high - as you
would expect. We can use the extractor instance to obtain these counts, by fitting it on the
data, and then calling (or, the shortcut using).

Before plotting, we normalized these counts by dividing by the relevant document lengths.
The following code does this, resulting in the percentage of words accounted for by each
function word:

We then average these percentages across all documents:

Finally we plot them using Matplotlib (Seaborn lacks easy interfaces to basic plots like this).

Authorship Attribution

[204]

Classifying with function words
 The only new thing here is the use of Support Vector Machines (SVM), which we will
cover in the next section (for now, just consider it a standard classification algorithm).

Next, we import our classes. We import the SVC class, an SVM for classification, as well as
the other standard workflow tools we have seen before:

SVMs take a number of parameters. As I said, we will use one blindly here, before going
into detail in the next section. We then use a dictionary to set which parameters we are
going to search. For the parameter, we will try and . For C, we will try
values of 1 and 10 (descriptions of these parameters are covered in the next section). We
then create a grid search to search these parameters for the best choices:

Authorship Attribution

[205]

Gaussian kernels (such as RBF) only work for reasonably sized data sets,
such as when the number of features is fewer than about 10,000.

Next, we set up a pipeline that takes the feature extraction step using the
(only using function words), along with our grid search using SVM.

The code is as follows:

Next, apply to get our cross-validated score for this pipeline. The result
is 0.811, which means we approximately get 80 percent of the predictions correct.

Support Vector Machines
SVMs are classification algorithms based on a simple and intuitive idea, backed by some
complex and innovative mathematics. SVMs perform classification between two classes
(although we can extend it to more classes using various meta-algorithms), by simply
drawing a separating line between the two (or a hyperplane in higher-dimensions). The
intuitive idea is to choose the best line of separation, rather than just any specific line.

Suppose that our two classes can be separated by a line such that any points above the line
belong to one class and any below the line belong to the other class. SVMs find this line and
use it for prediction, much the same way as linear regression works. SVMs, however, find
the best line for separating the dataset. In the following figure, we have three lines that
separate the dataset: blue, black, and green. Which would you say is the best option?

Authorship Attribution

[206]

Intuitively, a person would normally choose the blue line as the best option, as this
separates the data in the cleanest way. More formally, it has the maximum distance from
the line to any point in each class. Finding this line of maximum separation is an
optimization problem, based on finding the lines of margin with the maximum distance
between them. Solving this optimisation problem is the main task of the training phase of
an SVM.

The equations to solve SVMs is outside the scope of this book, but I
recommend interested readers to go through the derivations at:

for the
details.
Alternatively, you can visit:

Classifying with SVMs
After training the model, we have a line of maximum margin. The classification of new
samples is then simply asking the question: does it fall above the line, or below it? If it falls
above the line, it is predicted as one class. If it is below the line, it is predicted as the other
class.

For multiple classes, we create multiple SVMs—each a binary classifier. We then connect
them using any one of a variety of strategies. A basic strategy is to create a one-versus-all
classifier for each class, where we train using two classes—the given class and all other
samples. We do this for each class and run each classifier on a new sample, choosing the
best match from each of these. This process is performed automatically in most SVM
implementations.

We saw two parameters in our previous code: C and kernel. We will cover the kernel
parameter in the next section, but the C parameter is an important parameter for fitting
SVMs. The C parameter relates to how much the classifier should aim to predict all training
samples correctly, at the risk of overfitting. Selecting a higher C value will find a line of
separation with a smaller margin, aiming to classify all training samples correctly. Choosing
a lower C value will result in a line of separation with a larger margin—even if that means
that some training samples are incorrectly classified. In this case, a lower C value presents a
lower chance of overfitting, at the risk of choosing a generally poorer line of separation

One limitation with SVMs (in their basic form) is that they only separate data that is linearly
separable. What happens if the data isn't? For that problem, we use kernels.

Authorship Attribution

[207]

Kernels
When the data cannot be separated linearly, the trick is to embed it on to a higher
dimensional space. What this means, with a lot of hand-waving about the details, is to add
new features to the dataset until the data is linearly separable. If you add the right kinds of
features, this linear separation will always, eventually, happen.

The trick is that we often compute the inner-produce of the samples when finding the best
line to separate the dataset. Given a function that uses the dot product, we effectively
manufacture new features without having to actually define those new features. This is
known as the kernel trick and is handy because we don't know what those features were
going to be anyway. We now define a kernel as a function that itself is the dot product of
the function of two samples from the dataset, rather than based on the samples (and the
made-up features) themselves.

We can now compute what that dot product is (or approximate it) and then just use that.

There are a number of kernels in common use. The linear kernel is the most
straightforward and is simply the dot product of the two sample feature vectors, the weight
feature, and a bias value. There is also a polynomial kernel, which raises the dot product to
a given degree (for instance, 2). Others include the Gaussian (rbf) and Sigmoidal functions.
In our previous code sample, we tested between the linear kernel and the rbf kernel
options.

The end result from all this derivation is that these kernels effectively define a distance
between two samples that is used in the classification of new samples in SVMs. In theory,
any distance could be used, although it may not share the same characteristics that enable
easy optimization of the SVM training.

In scikit-learn's implementation of SVMs, we can define the kernel parameter to change
which kernel function is used in computations, as we saw in the previous code sample.

Character n-grams
We saw how function words can be used as features to predict the author of a document.
Another feature type is character n-grams. An n-gram is a sequence of n tokens, where n is a
value (for text, generally between 2 and 6). Word n-grams have been used in many studies,
usually relating to the topic of the documents - as per the previous chapter. However,
character n-grams have proven to be of high quality for authorship attribution.

Authorship Attribution

[208]

Character n-grams are found in text documents by representing the document as a sequence
of characters. These n-grams are then extracted from this sequence and a model is trained.
There are a number of different models for this, but a standard one is very similar to the
bag-of-words model we have used earlier.

For each distinct n-gram in the training corpus, we create a feature for it. An example of an
n-gram is , which is the letter e, space, and then the letter t (the angle brackets are
used to denote the start and end of the n-gram and are not part of the n-gram itself). We
then train our model using the frequency of each n-gram in the training documents and
train the classifier using the created feature matrix.

Character n-grams are defined in many ways. For instance, some
applications only choose within-word characters, ignoring whitespace and
punctuation. Some use this information (like our implementation in this
chapter) for classification. Ultimately, this is the purpose of the model,
chosen by the data miner (you!).

A common theory for why character n-grams work is that people more typically write
words they can easily say and character n-grams (at least when n is between 2 and 6) are a
good approximation for phonemes—the sounds we make when saying words. In this
sense, using character n-grams approximates the sounds of words, which approximates
your writing style. This is a common pattern when creating new features. First, we have a
theory on what concepts will impact the end result (authorship style) and then create
features to approximate or measure those concepts.

One key feature of a character n-gram matrix is that it is sparse and increases in sparsity
with higher n-values quite quickly. For an n-value of 2, approximately 75 percent of our
feature matrix is zeros. For an n-value of 5, over 93 percent is zeros. This is typically less
sparse than a word n-gram matrix of the same type though and shouldn't cause many
issues using a classifier that is used for word-based classifications.

Extracting character n-grams
We are going to use our class to extract character n-grams. To do that,
we set the analyzer parameter and specify a value for n to extract n-grams with.

The implementation in scikit-learn uses an n-gram range, allowing you to extract n-grams
of multiple sizes at the same time. We won't delve into different n-values in this
experiment, so we just set the values the same. To extract n-grams of size 3, you need to
specify (3, 3) as the value for the n-gram range.

Authorship Attribution

[209]

We can reuse the grid search from our previous code. All we need to do is specify the new
feature extractor in a new pipeline and run it:

There is a lot of implicit overlap between function words and character n-
grams, as character sequences in function words are more likely to appear.
However, the actual features are very different and character n-grams
capture punctuation, a characteristic that function words do not capture.
For example, a character n-gram includes the full stop at the end of a
sentence, while a function word-based method would only use the
preceding word itself.

The Enron dataset
Enron was one of the largest energy companies in the world in the late 1990s, reporting
revenue over $100 billion. It had over 20,000 staff and—as of the year 2000—there seemed to
be no indications that something was very wrong.

In 2001, the Enron Scandal occurred, where it was discovered that Enron was undertaking
systematic, fraudulent accounting practices. This fraud was deliberate, wide-ranging across
the company, and for significant amounts of money. After this was publicly discovered, its
share price dropped from more than $90 in 2000 to less than $1 in 2001. Enron shortly filed
for bankruptcy in a mess that would take more than 5 years to finally be resolved.

As part of the investigation into Enron, the Federal Energy Regulatory Commission in the
United States made more than 600,000 e-mails publicly available. Since then, this dataset
has been used for research into everything from social network analysis to fraud analysis. It
is also a great dataset for authorship analysis, as we are able to extract e-mails from the sent
folder of individual users. This allows us to create a dataset much larger than many
previous datasets.

Authorship Attribution

[210]

Accessing the Enron dataset
The full set of Enron emails is available at

The full dataset is quite large, and provided in a compression format
called gzip. If you don't have a Linux-based machine to decompress
(unzip) this file, get an alternative program, such as 7-zip (

)

Download the full corpus and decompress it into your data folder. By default, this will
decompress into a folder called which then contains a folder called

. In the Notebook, setup the data folder for the Enron dataset:

Creating a dataset loader
As we are looking for authorship information, we only want the e-mails we can attribute to
a specific author. For that reason, we will look in each user's sent folder—that is, emails they
have sent. We can now create a function that will choose a couple of authors at random and
return each of the emails in their sent folder. Specifically, we are looking for the
payloads—that is, the content rather than the e-mails themselves. For that, we will need an
e-mail parser. The code is as follows:

We will be using this later to extract the payloads from the e-mail files that are in the data
folder.

With our data loading function, we are going to have a lot of options. Most of these ensure
that our dataset is relatively balanced. Some authors will have thousands of e-mails in their
sent mail, while others will have only a few dozen. We limit our search to only authors with
at least 10 e-mails using and take a maximum of 100 e-mails from each
author using the parameter. We also specify how many authors we
want to get—10 by default using the parameter.

Authorship Attribution

[211]

The function is below. Its main purpose is to loop through the authors, retrieve a number of
emails for that author, and store the document and class information in some lists. We also
store the mapping between an author's name and their numerical class value, which lets us
retrieve that information later.

Authorship Attribution

[212]

It may seem odd that we sort the e-mail addresses, only to shuffle them
around. The function doesn't always return the same results,
so we sort it first to get some stability. We then shuffle using a random
state, which means our shuffling can reproduce a past result if needed.

Outside of this function, we can now get a dataset by making the following function call.
We are going to use a random state of 14 here (as always in this book), but you can try other
values or set it to none to get a random set each time the function is called:

If you have a look at the dataset, there is still a further preprocessing set we need to
undertake. Our e-mails are quite messy, but one of the worst bits (from an authorship
analysis perspective) is that these e-mails contain writings from other authors, in the form
of attached replies. Take the following email, which is , for instance:

I would like to be on the panel but I have on a conflict on the conference

dates. Please keep me in mind for next year.

Mark Haedicke

Email is a notoriously messy format. Reply quoting, for instance, is
sometimes (but not always) prepended with a > character. Other times, the
reply is embedded in the original message. If you are doing larger scale
data mining with email, be sure to spend more time cleaning the data to
get better results.

As with the books dataset, we can plot the histogram of document lengths to get a sense of
the document length distributions:

Authorship Attribution

[213]

The result appears to show a strong grouping around shorter documents. While this is true,
it also shows that some documents are very, very long. This may skew the results,
particularly if some authors are prone to writing long documents. To compensate for this,
one extension to this work may be to normalise document lengths to the first 500 characters
before doing the training.

Putting it all together
We can use the existing parameter space and the existing classifier from our previous
experiments—all we need to do is refit it on our new data. By default, training in scikit-
learn is done from scratch—subsequent calls to will discard any previous
information.

There is a class of algorithms called online learning that update the training
with new samples and don't restart their training each time.

Authorship Attribution

[214]

As before, we can compute our scores by using and print the results.
The code is as follows:

The result is 0.683, which is a reasonable result for such a messy dataset. Adding more data
(such as increasing in the dataset loading) can improve these results, as
will improving the quality of the data with extra cleaning.

Evaluation
It is generally never a good idea to base an assessment on a single number. In the case of the
f-score, it is usually more robust to tricks that give good scores despite not being useful. An
example of this is accuracy. As we said in our previous chapter, a spam classifier could
predict everything as being spam and get over 80 percent accuracy, although that solution
is not useful at all. For that reason, it is usually worth going more in-depth on the results.

To start with, we will look at the confusion matrix, as we did in , Beating
CAPTCHAs with Neural Networks. Before we can do that, we need to predict a testing set.
The previous code uses , which doesn't actually give us a trained model
we can use. So, we will need to refit one. To do that, we need training and testing subsets:

Next, we fit the pipeline to our training documents and create our predictions for the testing
set:

At this point, you might be wondering what the best combination of parameters actually
was. We can extract this quite easily from our grid search object (which is the classifier step
of our pipeline):

Authorship Attribution

[215]

The results give you all of the parameters for the classifier. However, most of the
parameters are the defaults that we didn't touch. The ones we did search for were C and
kernel, which were set to 1 and linear, respectively.

Now we can create a confusion matrix:

Next, we get our author's names, allowing us to that we can label the axis correctly. For this
purpose, we use the authors dictionary that our Enron dataset loaded. The code is as
follows:

Finally, we show the confusion matrix using matplotlib. The only changes from the last
chapter are highlighted below; just replace the letter labels with the authors from this
chapter's experiments:

Authorship Attribution

[216]

The results are shown in the following figure:

We can see that authors are predicted correctly in most cases—there is a clear diagonal line
with high values. There are some large sources of error though (darker values are larger):
emails from user rapp-b are typically predicted as being from reitmeyer-j for instance.

Summary
In this chapter, we looked at the text mining-based problem of authorship attribution. To
perform this, we analyzed two types of features: function words and character n-grams. For
function words, we were able to use the bag-of-words model—simply restricted to a set of
words we chose beforehand. This gave us the frequencies of only those words. For character
n-grams, we used a very similar workflow using the same class. However, we changed the
analyzer to look at characters and not words. In addition, we used n-grams that are
sequences of n tokens in a row—in our case characters. Word n-grams are also worth
testing in some applications, as they can provide a cheap way to get the context of how a
word is used.

Authorship Attribution

[217]

For classification, we used SVMs that optimize a line of separation between the classes
based on the idea of finding the maximum margin. Anything above the line is one class and
anything below the line is another class. As with the other classification tasks we have
considered, we have a set of samples (in this case, our documents).

We then used a very messy dataset, the Enron e-mails. This dataset contains lots of artifacts
and other issues. This resulted in a lower accuracy than the books dataset, which was much
cleaner. However, we were able to choose the correct author more than half the time, out of
10 possible authors.

To take the concepts in this chapter further, look for new datasets containing authorship
information. For instance, can you predict the author of a blog post? What about the author
of a tweet (you may be able to reuse your data from , Social Media Insight Using
Naive Bayes)?

In the next chapter, we consider what we can do if we don't have target classes. This is
called unsupervised learning, an exploratory problem rather than a prediction problem. We
also continue to deal with messy text-based datasets.

110
Clustering News Articles

In most of the earlier chapters, we performed data mining knowing what we were looking
for. Our use of target classes allowed us to learn how our features model those targets during
the training phase, which lets the algorithm set internal parameters to maximize its
learning. This type of learning, where we have targets to train against, is called supervised
learning. In this chapter, we'll consider what we do without those targets. This is
unsupervised learning and it's much more of an exploratory task. Rather than wanting to
classify with our model, the goal in unsupervised learning is to explore the data to find
insights.

In this chapter, we will look at clustering news articles to find trends and patterns in the
data. We'll look at how we can extract data from different websites using a link aggregation
website to show a variety of news stories.

The key concepts covered in this chapter include:

Using the reddit API to collect interesting news stories
Obtaining text from arbitrary websites
Cluster analysis for unsupervised data mining
Extracting topics from documents
Online learning for updating a model without retraining it
Cluster ensembling to combine different models

Clustering News Articles

[219]

Trending topic discovery
In this chapter, we will build a system that takes a live feed of news articles and groups
them together such that the groups have similar topics. You could run the system multiple
times over several weeks (or longer) to see how trends change over that time.

Our system will start with the popular link aggregation website (
), which stores lists of links to other websites, as well as a comments section for discussion.
Links on reddit are broken into several categories of links, called subreddits. There are
subreddits devoted to particular TV shows, funny images, and many other things. What we
are interested in are the subreddits for news. We will use the /r/worldnews subreddit in this
chapter, but the code should work with any other text-based subreddit.

In this chapter, our goal is to download popular stories and then cluster them to see any
major themes or concepts that occur. This will give us an insight into the popular focus,
without having to manually analyze hundreds of individual stories. The general process is
to:

Collect links to recent popular news stories from reddit.1.
Download the web page from those links.2.
Extract just the news story from the downloaded website.3.
Perform cluster analysis to find clusters of stories.4.
Analyse those clusters to discover trends.5.

Using a web API to get data
We have used web-based APIs to extract data in several of our previous chapters. For
instance, in , Follow Recommendations Using Graph Mining, we used Twitter's API
to extract data. Collecting data is a critical part of the data mining pipeline, and web-based
APIs are a fantastic way to collect data on a variety of topics.

There are three things you need to consider when using a web-based API for collecting
data: authorization methods, rate limiting, and API endpoints.

Authorization methods allow the data provider to know who is collecting the data, in order
to ensure that they are being appropriately rate-limited and that data access can be tracked.
For most websites, a personal account is often enough to start collecting data, but some
websites will ask you to create a formal developer account to get this access.

Clustering News Articles

[220]

Rate limiting is applied to data collection, particularly free services. It is important to be
aware of the rules when using APIs, as they can and do change from website to website.
Twitter's API limit is 180 requests per 15 minutes (depending on the particular API call).
Reddit, as we will see later, allows 30 requests per minute. Other websites impose daily
limits, while others limit on a per-second basis. Even within websites, there are drastic
differences for different API calls. For example, Google Maps has smaller limits and
different API limits per-resource, with different allowances for the number of requests per
hour.

If you find you are creating an app or running an experiment that needs
more requests and faster responses, most API providers have commercial
plans that allow for more calls. Contact the provider for more details.

API Endpoints are the actual URLs that you use to extract information. These vary from
website to website. Most often, web-based APIs will follow a RESTful interface (short for
Representational State Transfer). RESTful interfaces often use the same actions that HTTP
does: , , and are the most common. For instance, to retrieve information on
a resource, we might use the following (example only) API endpoint:

To get the information, we just send an HTTP request to this URL. This will return
information on the resource with the given type and ID. Most APIs follow this structure,
although there are some differences in the implementation. Most websites with APIs will
have them appropriately documented, giving you details of all the APIs that you can
retrieve.

First, we set up the parameters to connect to the service. To do this, you will need a
developer key for reddit. In order to get this key, log into the site at

 and go to . From
here, click on are you a developer? create an app... and fill out the form, setting the type as
script. You will get your client ID and a secret, which you can add to a new Jupyter
Notebook:

Clustering News Articles

[221]

Reddit also asks you (when you use their API) to set the user agent to a unique string that
includes your username. Create a user agent string that uniquely identifies your
application. I used the name of the book, chapter 10, and a version number of 0.1 to create
my user agent, but it can be any string you like. Note that not doing this may result in your
connection being heavily rate-limited:

In addition, you will need to log in to reddit using your username and password. If you
don't have one already, sign up for a new one (it is free and you don't need to verify with
personal information either).

You will need your password to complete the next step, so be careful
before sharing your code to others to remove it. If you don't put your
password in, set it to none and you will be prompted to enter it.

Now let's create the username and password:

Next, we are going to create a function to log with this information. The reddit login API
will return a token that you can use for further connections, which will be the result of this
function. The code obtains the necessary information to log in to reddit, set the user agent,
and then obtain an access token that we can use with future requests:

Clustering News Articles

[222]

We can call now our function to get an access token:

This token object is just a dictionary, but it contains the string that we will
pass along with future requests. It also contains other information such as the scope of the
token (which would be everything) and the time in which it expires, for example:

If you are creating a production-level app, make sure you check the expiry
of the token and to refresh it if it runs out. You'll also know this has
happened if your access token stops working when trying to make an API
call.

Reddit as a data source
Reddit is a link aggregation website used by millions worldwide, although the English
versions are US-centric. Any user can contribute a link to a website they found interesting,
along with a title for that link. Other users can then upvote it, indicating that they liked the
link, or downvote it, indicating they didn't like the link. The highest voted links are moved
to the top of the page, while the lower ones are not shown. Older links are removed from
the front page over time, depending on how many upvotes it has. Users who have stories
upvoted earn points called karma, providing an incentive to submit only good stories.

Reddit also allows non-link content, called self-posts. These contain a title and some text
that the submitter enters. These are used for asking questions and starting discussions. For
this chapter, we will be considering only link-based posts, and not comment-based posts.

Posts are separated into different sections of the website called subreddits. A subreddit is a
collection of posts that are related. When a user submits a link to reddit, they choose which
subreddit it goes into. Subreddits have their own administrators, and have their own rules
about what is valid content for that subreddit.

By default, posts are sorted by Hot, which is a function of the age of a post, the number of
upvotes, the number of downvotes it has received and how liberal the content is. There is
also New, which just gives you the most recently posted stories (and therefore contains lots
of spam and bad posts), and Top, which is the highest voted stories for a given time period.
In this chapter, we will be using Hot, which will give us recent, higher-quality stories (there
really are a lot of poor-quality links in New).

Clustering News Articles

[223]

Using the token we previously created, we can now obtain sets of links from a subreddit. To
do that, we will use the /r/<subredditname> API endpoint that, by default, returns the Hot
stories. We will use the /r/worldnews subreddit:

The URL for the previous endpoint lets us create the full URL, which we can set using
string formatting:

Next, we need to set the headers. This is needed for two reasons: to allow us to use the
authorization token we received earlier and to set the user agent to stop our requests from
being heavily restricted. The code is as follows:

Then, as before, we use the requests library to make the call, ensuring that we set the
headers:

Calling on this will result in a Python dictionary containing the information
returned by reddit. It will contain the top 25 results from the given subreddit. We can get
the title by iterating over the stories in this response. The stories themselves are stored
under the dictionary's data key. The code is as follows:

Getting the data
Our dataset is going to consist of posts from the Hot list of the /r/worldnews subreddit. We
saw in the previous section how to connect to reddit and how to download links. To put it
all together, we will create a function that will extract the titles, links, and score for each
item in a given subreddit.

We will iterate through the subreddit, getting a maximum of 100 stories at a time. We can
also do pagination to get more results. We can read a large number of pages before reddit
will stop us, but we will limit it to 5 pages.

Clustering News Articles

[224]

As our code will be making repeated calls to an API, it is important to remember to rate-
limit our calls. To do so, we will need the sleep function:

Our function will accept a subreddit name and an authorization token. We will also accept a
number of pages to read, though we will set a default of 5:

We saw in , Follow Recommendations Using Graph Mining, how
pagination works for the Twitter API. We get a cursor with our returned
results, which we send with our request. Twitter will then use this cursor
to get the next page of results. The reddit API does almost exactly the
same thing, except it calls the parameter after. We don't need it for the first
page, so we initially set it to None. We will set it to a meaningful value
after our first page of results.

Calling the stories function is a simple case of passing the authorization token and the
subreddit name:

Clustering News Articles

[225]

The returned results should contain the title, URL, and 500 stories, which we will now use
to extract the actual text from the resulting websites. Here is a sample of the titles that I
received by running the script:

Russia considers banning sale of cigarettes to anyone born after 2015
Swiss Muslim girls must swim with boys
Report: Russia spread fake news and disinformation in Sweden - Russia has coordinated a campaign
over the past 2years to influence Sweden’s decision making by using disinformation, propaganda and
false documents, according to a report by researchers at The Swedish Institute of International
Affairs.
100% of Dutch Trains Now Run on Wind Energy. The Netherlands met its renewable energy goals a
year ahead of time.
Legal challenge against UK’s sweeping surveillance laws quickly crowdfunded
A 1,000-foot-thick ice block about the size of Delaware is snapping off of Antarctica
The U.S. dropped an average of 72 bombs every day — the equivalent of three an hour — in 2016,
according to an analysis of American strikes around the world. U.S. Bombed Iraq, Syria, Pakistan,
Afghanistan, Libya, Yemen, Somalia in 2016
The German government is investigating a recent surge in fake news following claims that Russia is
attempting to meddle in the country’s parliamentary elections later this year.
Pesticides kill over 10 million bees in a matter of days in Brazil countryside
The families of American victims of Islamic State terrorist attacks in Europe have sued Twitter,
charging that the social media giant allowed the terror group to proliferate online
Gas taxes drop globally despite climate change; oil & gas industry gets $500 billion in subsidies;
last new US gas tax was in 1993
Czech government tells citizens to arm themselves and shoot Muslim terrorists in case of 'Super
Holocaust'
PLO threatens to revoke recognition of Israel if US embassy moves to Jerusalem
Two-thirds of all new HIV cases in Europe are being recorded in just one country – Russia: More
than a million Russians now live with the virus and that number is expected to nearly double in the
next decade
Czech government tells its citizens how to fight terrorists: Shoot them yourselves | The interior
ministry is pushing a constitutional change that would let citizens use guns against terrorists
Morocco Prohibits Sale of Burqa
Mass killer Breivik makes Nazi salute at rights appeal case
Soros Groups Risk Purge After Trump’s Win Emboldens Hungary
Nigeria purges 50,000 ‘ghost workers’ from State payroll in corruption sweep
Alcohol advertising is aggressive and linked to youth drinking, research finds | Society
UK Government quietly launched ‘assault on freedom’ while distracting people, say campaigners
behind legal challenge - The Investigatory Powers Act became law at the end of last year, and gives
spies the power to read through everyone’s entire internet history
Russia’s Reserve Fund down 70 percent in 2016

Clustering News Articles

[226]

Russian diplomat found dead in Athens
At least 21 people have been killed (most were civilians) and 45 wounded in twin bombings near the
Afghan parliament in Kabul
Pound’s Decline Deepens as Currency Reclaims Dubious Honor

World news isn't usually the most optimistic of places, but it does give insight into what is
going on around the world, and trends on this subreddit are usually indicative of trends in
the world.

Extracting text from arbitrary websites
The links that we get from reddit go to arbitrary websites run by many different
organizations. To make it harder, those pages were designed to be read by a human, not a
computer program. This can cause a problem when trying to get the actual content/story of
those results, as modern websites have a lot going on in the background. JavaScript libraries
are called, style sheets are applied, advertisements are loaded using AJAX, extra content is
added to sidebars, and various other things are done to make the modern web page a
complex document. These features make the modern Web what it is, but make it difficult to
automatically get good information from!

Finding the stories in arbitrary websites
To start with, we will download the full web page from each of these links and store them
in our data folder, under a raw subfolder. We will process these to extract the useful
information later on. This caching of results ensures that we don't have to continuously
download the websites while we are working. First, we set up the data folder path:

We are going to use MD5 hashing to create unique filenames for our
articles, by hashing the URL, and we will import to do that. A

 function is a function that converts some input (in our case a string
containing the title) into a string that is seemingly random. The same input
will always return the same output, but slightly different inputs will
return drastically different outputs. It is also impossible to go from a hash
value to the original value, making it a one-way function.

Clustering News Articles

[227]

For this chapter's experiments, we are going to simply skip any website downloads that fail.
In order to make sure we don't lose too much information doing this, we maintain a simple
counter of the number of errors that occur. We are going to suppress any error that occurs,
which could result in a systematic problem prohibiting downloads. If this error counter is
too high, we can look at what those errors were and try to fix them. For example, if the
computer has no internet access, all 500 of the downloads will fail and you should probably
fix that before continuing!

Next, we iterate through each of our stories, download the website, and save the results to a
file:

If there is an error in obtaining the website, we simply skip this website and keep going.
This code will work on a large number of websites and that is good enough for our
application, as we are looking for general trends and not exactness.

Note that sometimes you do care about getting 100 percent of responses,
and you should adjust your code to accommodate more errors. Be warned
though that there is a significant increase in effort required to create code
the works reliably on data from the internet. The code to get those final 5
to 10 percent of websites will be significantly more complex.

In the preceding code, we simply catch any error that happens, record the error and move
on.

Clustering News Articles

[228]

If you find that too many errors occur, change the print(e) line to just type raise instead.
This will cause the exception to be called, allowing you to debug the problem.

After this has completed, we will have a bunch of websites in our subfolder. After
taking a look at these pages (open the created files in a text editor), you can see that the
content is there but there is HTML, JavaScript, CSS code, as well as other content. As we are
only interested in the story itself, we now need a way to extract this information from these
different websites.

Extracting the content
After we get the raw data, we need to find the story in each. There are several complex
algorithms for doing this, as well as some simple ones. We will stick with a simple method
here, keeping in mind that often enough, the simple algorithm is good enough. This is part
of data mining—knowing when to use simple algorithms to get a job done, versus using
more complicated algorithms to obtain that extra bit of performance.

First, we get a list of each of the filenames in our subfolder:

Next, we create an output folder for the text-only versions that we will extract:

Next, we develop the code that will extract the text from the files. We will use the lxml
library to parse the HTML files, as it has a good HTML parser that deals with some badly
formed expressions. The code is as follows:

The actual code for extracting text is based on three steps:

We iterate through each of the nodes in the HTML file and extract the text in it.1.
We skip any node that is JavaScript, styling, or a comment, as this is unlikely to2.
contain information of interest to us.
We ensure that the content has at least 100 characters. This is a good baseline, but3.
it could be improved upon for more accurate results.

Clustering News Articles

[229]

As we said before, we aren't interested in scripts, styles, or comments. So, we create a list to
ignore nodes of those types. Any node that has a type in this list will not be considered as
containing the story. The code is as follows:

We will now create a function that parses an HTML file into an lxml , and then we
will create another function that parses this tree looking for text. This first function is pretty
straightforward; simply open the file and create a tree using the lxml library's parsing
function for HTML files. The code is as follows:

In the last line of that function, we call the function to get the root node of the
tree, rather than the full . This allows us to write our text extraction function to accept
any node, and therefore write a recursive function.

This function will call itself on any child nodes to extract the text from them, and then
return the concatenation of any child nodes text.

If the node where this function is passed doesn't have any child nodes, we
just return the text from it. If it doesn't have any text, we just return an
empty string. Note that we also check here for our third condition—that
the text is at least 100 characters long.

The code for checking that the text is at least 100 characters long is as follows:

Clustering News Articles

[230]

At this point, we know that the node has child nodes, so we recursively call this function on
each of those child nodes and then join the results when they return.

The final condition inside the return line stops blank lines being returned (for example,
when a node has no children and no text). We also use a generator, which makes the code
more efficient by only grabbing text data when it is needed, namely the final return
statement rather than creating a number of sub-lists.

We can now run this code on all of the raw HTML pages by iterating through them, calling
the text extraction function on each, and saving the results to the text-only subfolder:

You can evaluate the results manually by opening each of the files in the text only subfolder
and checking their content. If you find too many of the results have non-story content, try
increasing the minimum-100-character limit. If you still can't get good results, or need better
results for your application, try the methods listed in Appendix A, Next Steps.

Grouping news articles
The aim of this chapter is to discover trends in news articles by clustering, or grouping,
them together. To do that, we will use the k-means algorithm, a classic machine learning
algorithm originally developed in 1957.

Clustering is an unsupervised learning technique and we often use clustering algorithms
for exploring data. Our dataset contains approximately 500 stories and it would be quite
arduous to examine each of those stories individually. Using clustering allows us to group
similar stories together, and we can explore the themes in each cluster independently.

We use clustering techniques when we don't have a clear set of target
classes for our data. In that sense, clustering algorithms have little
direction in their learning. They learn according to some function,
regardless of the underlying meaning of the data.

Clustering News Articles

[231]

For this reason, it is critical to choose good features. In supervised learning, if you choose
poor features, the learning algorithm can choose to not use those features. For instance,
support vector machines will give little weight to features that aren't useful in classification.
However, with clustering, all features are used in the final result—even if those features
don't provide us with the answer we were looking for.

When performing cluster analysis on real-world data, it is always a good idea to have a
sense of what sorts of features will work for your scenario. In this chapter, we will use the
bag-of-words model. We are looking for topic-based groups, so we will use topic-based
features to model the documents. We know those features work because of the work others
have done in supervised versions of our problem. In contrast, if we were to perform an
authorship-based clustering, we would use features such as those found in the ,
Authorship Attribution, experiment.

The k-means algorithm
The k-means clustering algorithm finds centroids that best represent the data using an
iterative process. The algorithm starts with a predefined set of centroids, which are
normally data points taken from the training data. The k in k-means is the number of
centroids to look for and how many clusters the algorithm will find. For instance, setting k
to 3 will find three clusters in the dataset.

There are two phases to the k-means: assignment and updating. They are explained as
below:

In the assignment step, we set a label to every sample in the dataset linking it to
the nearest centroid. For each sample nearest to centroid 1, we assign the label 1.
For each sample nearest to centroid 2, we assign a label 2 and so on for each of
the k centroids. These labels form the clusters, so we say that each data point with
the label 1 is in cluster 1 (at this time only, as assignments can change as the
algorithm runs).
In the updating step, we take each of the clusters and compute the centroid,
which is the mean of all of the samples in that cluster.

The algorithm then iterates between the assignment step and the updating step; each time
the updating step occurs, each of the centroids moves a small amount. This causes the
assignments to change slightly, causing the centroids to move a small amount in the next
iteration. This repeats until some stopping criterion is reached.

Clustering News Articles

[232]

It is common to stop after a certain number of iterations, or when the total
movement of the centroids is very low. The algorithm can also complete in
some scenarios, which means that the clusters are stable—the assignments
do not change and neither do the centroids.

In the following figure, k-means was performed over a dataset created randomly, but with
three clusters in the data. The stars represent the starting location of the centroids, which
were chosen randomly by picking a random sample from the dataset. Over 5 iterations of
the k-means algorithm, the centroids move to the locations represented by the triangles.

The k-means algorithm is fascinating for its mathematical properties and historical
significance. It is an algorithm that (roughly) only has a single parameter, and is quite
effective and frequently used, even more than 50 years after its discovery.

Clustering News Articles

[233]

There is a k-means algorithm in scikit-learn, which we import from the module in
scikit-learn:

We also import the class's close cousin, . This
vectorizer applies a weighting to each term's counts, depending on how many documents it
appears in, using the equation: tf / log(df), where tf is a term's frequency (how many times
it appears in the current document) and df is the term's document frequency (how many
documents in our corpus it appears in). Terms that appear in many documents are
weighted lower (by dividing the value by the log of the number of documents it appears
in). For many text mining applications, using this type of weighting scheme can improve
performance quite reliably. The code is as follows:

We then set up our pipeline for our analysis. This has two steps. The first is to apply our
vectorizer, and the second is to apply our k-means algorithm. The code is as follows:

The parameter is set to a low value of 0.4, which says ignore any word that occurs
in more than 40 percent of documents. This parameter is invaluable for removing function
words that give little topic-based meaning on their own.

Removing any word that occurs in more than 40 percent of documents
will remove function words, making this type of preprocessing quite
useless for the work we saw in , Authorship Attribution.

We then fit and predict this pipeline. We have followed this process a number of times in
this book so far for classification tasks, but there is a difference here—we do not give the
target classes for our dataset to the fit function. This is what makes this an unsupervised
learning task! The code is as follows:

Clustering News Articles

[234]

The labels variable now contains the cluster numbers for each sample. Samples with the
same label are said to belong to the same cluster. It should be noted that the cluster labels
themselves are meaningless: clusters 1 and 2 are no more similar than clusters 1 and 3.

We can see how many samples were placed in each cluster using the class:

Cluster 0 contains 1 samples
Cluster 1 contains 2 samples
Cluster 2 contains 439 samples
Cluster 3 contains 1 samples
Cluster 4 contains 2 samples
Cluster 5 contains 3 samples
Cluster 6 contains 27 samples
Cluster 7 contains 2 samples
Cluster 8 contains 12 samples
Cluster 9 contains 1 samples

Many of the results (keeping in mind that your dataset will be quite
different to mine) consist of a large cluster with the majority of instances,
several medium clusters, and some clusters with only one or two
instances. This imbalance is quite normal in many clustering applications.

Evaluating the results
Clustering is mainly an exploratory analysis, and therefore it is difficult to evaluate a
clustering algorithm's results effectively. A straightforward way is to evaluate the algorithm
based on the criteria the algorithm tries to learn from.

If you have a test set, you can evaluate clustering against it. For more
details, visit

Clustering News Articles

[235]

In the case of the k-means algorithm, the criterion that it uses when developing the
centroids is to minimize the distance from each sample to its nearest centroid. This is called
the inertia of the algorithm and can be retrieved from any KMeans instance that has had fit
called on it:

The result on my dataset was 343.94. Unfortunately, this value is quite meaningless by itself,
but we can use it to determine how many clusters we should use. In the preceding example,
we set to 10, but is this the best value? The following code runs the k-means
algorithm 10 times with each value of from 2 to 20, taking some time to
complete the large number of runs.

For each run, it records the inertia of the result.

You may notice the following code that we don't use a Pipeline; instead, we split out the
steps. We only create the X matrix from our text documents once per value of
to (drastically) improve the speed of this code.

The variable now contains a list of inertia scores for each n_clusters value
between 2 and 20. We can plot this to get a sense of how this value interacts with

:

Clustering News Articles

[236]

Overall, the value of the inertia should decrease with reducing improvement as the number
of clusters improves, which we can broadly see from these results. The increase between
values of 6 to 7 is due only to the randomness in selecting the centroids, which directly
affect how good the final results are. Despite this, there is a general trend (for my data; your
results may vary) that about 6 clusters was the last time a major improvement in the inertia
occurred.

After this point, only slight improvements are made to the inertia, although it is hard to be
specific about vague criteria such as this. Looking for this type of pattern is called the elbow
rule, in that we are looking for an elbow-esque bend in the graph. Some datasets have more
pronounced elbows, but this feature isn't guaranteed to even appear (some graphs may be
smooth!).

Based on this analysis, we set to be 6 and then rerun the algorithm:

Clustering News Articles

[237]

Extracting topic information from clusters
Now we set our sights on the clusters in an attempt to discover the topics in each.

We first extract the term list from our feature extraction step:

We also set up another counter for counting the size of each of our classes:

Iterating over each cluster, we print the size of the cluster as before.

It is important to keep in mind the sizes of the clusters when evaluating
the results—some of the clusters will only have one sample, and are
therefore not indicative of a general trend.

Next (and still in the loop), we iterate over the most important terms for this cluster. To do
this, we take the five largest values from the centroid, which we get by finding the features
that have the highest values in the centroid itself.

The results can be quite indicative of current trends. In my results (obtained January 2017),
the clusters correspond to health matters, Middle East tensions, Korean tensions, and
Russian affairs. These were the main topics frequenting news around this time—although
this has hardly changed for a number of years!

Clustering News Articles

[238]

You might notice some words that don't provide much value come out on top, such as you,
her and mr. These function words are great for authorship analysis - as we saw in

, Authorship Attribution, but are not generally very good for topic analysis. Passing the list
of function words into the parameter of the TfidfVectorizer in our pipeline
above will ignore those words. Here is the updated code for building such a pipeline:

Using clustering algorithms as transformers
As a side note, one interesting property about the k-means algorithm (and any clustering
algorithm) is that you can use it for feature reduction. There are many methods to reduce
the number of features (or create new features to embed the dataset on), such as Principle
Component Analysis, Latent Semantic Indexing, and many others. One issue with many
of these algorithms is that they often need lots of computing power.

In the preceding example, the terms list had more than 14,000 entries in it—it is quite a large
dataset. Our k-means algorithm transformed these into just six clusters. We can then create
a dataset with a much lower number of features by taking the distance to each centroid as a
feature.

To do this, we call the transform function on a KMeans instance. Our pipeline is fit for this
purpose, as it has a k-means instance at the end:

This calls the transform method on the final step of the pipeline, which is an instance of k-
means. This results in a matrix that has six features and the number of samples is the same
as the length of documents.

You can then perform your own second-level clustering on the result, or use it for
classification if you have the target values. A possible workflow for this would be to
perform some feature selection using the supervised data, use clustering to reduce the
number of features to a more manageable number, and then use the results in a
classification algorithm such as SVMs.

Clustering News Articles

[239]

Clustering ensembles
In , Predicting Sports Winners with Decision Trees, we looked at a classification
ensemble using the random forest algorithm, which is an ensemble of many low-quality,
tree-based classifiers. Ensembling can also be performed using clustering algorithms. One
of the key reasons for doing this is to smooth the results from many runs of an algorithm.
As we saw before, the results from running k-means are varied, depending on the selection
of the initial centroids. Variation can be reduced by running the algorithm many times and
then combining the results.

Ensembling also reduces the effects of choosing parameters on the final
result. Most clustering algorithms are quite sensitive to the parameter
values chosen for the algorithm. Choosing slightly different parameters
results in different clusters.

Evidence accumulation
As a basic ensemble, we can first cluster the data many times and record the labels from
each run. We then record how many times each pair of samples was clustered together in a
new matrix. This is the essence of the Evidence Accumulation Clustering (EAC) algorithm.

EAC has two major steps.

The first step is to cluster the data many times using a lower-level clustering1.
algorithm, such as k-means and record the frequency that samples were in the
same cluster, in each iteration. This is stored in a co-association matrix.
The second step is to perform a cluster analysis on the resulting co-association2.
matrix, which is performed using another type of clustering algorithm called
hierarchical clustering. This has an interesting graph-theory-based property, as it
is mathematically the same as finding a tree that links all the nodes together and
removing weak links.

We can create a co-association matrix from an array of labels by iterating over each of the
labels and recording where two samples have the same label. We use SciPy's ,
which is a type of sparse matrix:

Clustering News Articles

[240]

Our function definition takes a set of labels and then record the rows and columns of each
match. We do these in a list. Sparse matrices are commonly just sets of lists recording the
positions of nonzero values, and is an example of this type of sparse
matrix. For each pair of samples with the same label, we record the position of both samples
in our list:

To get the co-association matrix from the labels, we simply call this function:

From here, we can add multiple instances of these matrices together. This allows us to
combine the results from multiple runs of k-means. Printing out (just enter C into a new
cell of your Jupyter Notebook and run it) will tell you how many cells have nonzero values
in them. In my case, about half of the cells had values in them, as my clustering result had a
large cluster (the more even the clusters, the lower the number of nonzero values).

The next step involves the hierarchical clustering of the co-association matrix. We will do
this by finding minimum spanning trees on this matrix and removing edges with a weight
lower than a given threshold.

In graph theory, a spanning tree is a set of edges on a graph that connects all of the nodes
together. The Minimum Spanning Tree (MST) is simply the spanning tree with the lowest
total weight. For our application, the nodes in our graph are samples from our dataset, and
the edge weights are the number of times those two samples were clustered together—that
is, the value from our co-association matrix.

Clustering News Articles

[241]

In the following figure, a MST on a graph of six nodes is shown. Nodes on the graph can be
connected to more than once in the MST, as long as all nodes are connected together.

To compute the MST, we use SciPy's function, which is found in
the sparse package:

The function can be called directly on the sparse matrix returned by our co-association
function:

However, in our co-association matrix C, higher values are indicative of samples that are
clustered together more often—a similarity value. In contrast,
sees the input as a distance, with higher scores penalized. For this reason, we compute the
minimum spanning tree on the negation of the co-association matrix instead:

Clustering News Articles

[242]

The result from the preceding function is a matrix the same size as the co-association matrix
(the number of rows and columns is the same as the number of samples in our dataset),
with only the edges in the MST kept and all others removed.

We then remove any node with a weight less than a predefined threshold. To do this, we
iterate over the edges in the MST matrix, removing any that are less than a specific value.
We can't test this out with just a single iteration in a co-association matrix (the values will be
either 1 or 0, so there isn't much to work with). So, we will create extra labels first, create the
co-association matrix, and then add the two matrices together. The code is as follows:

We then compute the MST and remove any edge that didn't occur in both of these labels:

The threshold we wanted to cut off was any edge not in both clusterings—that is, with a
value of 1. However, as we negated the co-association matrix, we had to negate the
threshold value too.

Lastly, we find all of the connected components, which is simply a way to find all of the
samples that are still connected by edges after we removed the edges with low weights. The
first returned value is the number of connected components (that is, the number of clusters)
and the second is the labels for each sample. The code is as follows:

In my dataset, I obtained eight clusters, with the clusters being approximately the same as
before. This is hardly a surprise, given we only used two iterations of k-means; using more
iterations of k-means (as we do in the next section) will result in more variance.

Clustering News Articles

[243]

How it works
In the k-means algorithm, each feature is used without any regard to its weight. In essence,
all features are assumed to be on the same scale. We saw the problems with not scaling
features in , Classification with scikit-learn Estimators. The result of this is that k-
means is looking for circular clusters, visualized here:

Oval shaped clusters can also be discovered by k-means. The separation usually isn't quite
so smooth, but can be made easier with feature scaling. An example of this shaped cluster is
as follows:

Clustering News Articles

[244]

As we can see in the preceding screenshot, not all clusters have this shape. The blue cluster
is circular and is of the type that k-means is very good at picking up. The red cluster is an
ellipse. The k-means algorithm can pick up clusters of this shape with some feature scaling.

The bellow third cluster isn't even convex—it is an odd shape that k-means will have
trouble discovering, but would still be considered a cluster, at least by most humans looking
at the picture:

Cluster analysis is a hard task, with most of the difficulty simply in trying to define the
problem. Many people intuitively understand what it means, but trying to define it in
precise terms (necessary for machine learning) is very difficult. Even people often disagree
on the term!

The EAC algorithm works by remapping the features onto a new space, in essence turning
each run of the k-means algorithm into a transformer using the same principles we saw the
previous section using k-means for feature reduction. In this case, though, we only use the
actual label and not the distance to each centroid. This is the data that is recorded in the co-
association matrix.

Clustering News Articles

[245]

The result is that EAC now only cares about how close things are to each other, not how
they are placed in the original feature space. There are still issues around unscaled features.
Feature scaling is important and should be done anyway (we did it using tf-idf in this
chapter, which results in feature values having the same scale).

We saw a similar type of transformation in , Authorship Attribution, through the
use of kernels in SVMs. These transformations are very powerful and should be kept in
mind for complex datasets. The algorithms for remapping data onto a new feature space
does not need to be complex though, as you'll see in the EAC algorithm.

Implementation
Putting all this all together, we can now create a clustering algorithm fitting the scikit-learn
interface that performs all of the steps in EAC. First, we create the basic structure of the
class using scikit-learn's ClusterMixin.

Our parameters are the number of k-means clusterings to perform in the first step (to create
the co-association matrix), the threshold to cut off at, and the number of clusters to find in
each k-means clustering. We set a range of n_clusters in order to get lots of variance in our
k-means iterations. Generally, in ensemble terms, variance is a good thing; without it, the
solution can be no better than the individual clusterings (that said, high variance is not an
indicator that the ensemble will be better).

I'll present the full class first, and then overview each of the functions:

Clustering News Articles

[246]

The goal of the function is to perform the k-means clusters a number of times, combine
the co-association matrices and then split it by finding the MST, as we saw earlier with the
EAC example. We then perform our low-level clustering using k-means and sum the
resulting co-association matrices from each iteration. We do this in a generator to save
memory, creating only the co-association matrices when we need them. In each iteration of
this generator, we create a new single k-means run with our dataset and then create the co-
association matrix for it. We use to add these together.

As before, we create the MST, remove any edges less than the given threshold (properly
negating values as explained earlier), and find the connected components. As with any fit
function in scikit-learn, we need to return self in order for the class to work in pipelines
effectively.

The function is designed to perform a single iteration of k-means on
our data, and then return the predicted labels. To do this, we randomly choose a number of
clusters to find using NumPy's function and our parameter,
which sets the range of possible values. We then cluster and predict the dataset using k-
means. The return value here will be the labels coming from k-means.

Finally, the function simply calls fit, and then returns the labels for the
documents.

We can now run this on our previous code by setting up a pipeline as before and using EAC
where we previously used a KMeans instance as our final stage of the pipeline. The code is
as follows:

Online learning
In some cases, we don't have all of the data we need for training before we start our
learning. Sometimes, we are waiting for new data to arrive, perhaps the data we have is too
large to fit into memory, or we receive extra data after a prediction has been made. In cases
like these, online learning is an option for training models over time.

Clustering News Articles

[247]

Online learning is the incremental updating of a model as new data arrives. Algorithms
that support online learning can be trained on one or a few samples at a time, and updated
as new samples arrive. In contrast, algorithms that are not online require access to all of the
data at once. The standard k-means algorithm is like this, as are most of the algorithms we
have seen so far in this book.

Online versions of algorithms have a means to partially update their model with only a few
samples. Neural networks are a standard example of an algorithm that works in an online
fashion. As a new sample is given to the neural network, the weights in the network are
updated according to a learning rate, which is often a very small value such as 0.01. This
means that any single instance only makes a small (but hopefully improving) change to the
model.

Neural networks can also be trained in batch mode, where a group of samples is given at
once and the training is done in one step. Algorithms are generally faster in batch mode but
use more memory.

In this same vein, we can slightly update the k-means centroids after a single or small batch
of samples. To do this, we apply a learning rate to the centroid movement in the updating
step of the k-means algorithm. Assuming that samples are randomly chosen from the
population, the centroids should tend to move towards the positions they would have in
the standard, offline, and k-means algorithm.

Online learning is related to streaming-based learning; however, there are some important
differences. Online learning is capable of reviewing older samples after they have been used
in the model, while a streaming-based machine learning algorithm typically only gets one
pass—that is, one opportunity to look at each sample.

Implementation
The scikit-learn package contains the MiniBatchKMeans algorithm, which allows online
learning. This class implements a partial_fit function, which takes a set of samples and
updates the model. In contrast, calling fit() will remove any previous training and refit the
model only on the new data.

MiniBatchKMeans follows the same clustering format as other algorithms in scikit-learn, so
creating and using it is much the same as other algorithms.

Clustering News Articles

[248]

The algorithm works by taking a streaming average of all points that it has seen. To
compute this, we only need to keep track of two values, which are the current sum of all
seen points, and the number of points seen. We can then use this information, combined
with a new set of points, to compute the new averages in the updating step.

Therefore, we can create a matrix X by extracting features from our dataset using
, and then sample from this to incrementally update our model. The

code is as follows:

We then import MiniBatchKMeans and create an instance of it:

Next, we will randomly sample from our X matrix to simulate data coming in from an
external source. Each time we get some data in, we update the model:

We can then get the labels for the original dataset by asking the instance to predict:

At this stage, though, we can't do this in a pipeline as is not an online
algorithm. To get over this, we use a . The
class is a clever use of hashing algorithms to drastically reduce the memory of computing
the bag-of-words model. Instead of recording the feature names, such as words found in
documents, we record only hashes of those names. This allows us to know our features
before we even look at the dataset, as it is the set of all possible hashes. This is a very large
number, usually of the order of 218. Using sparse matrices, we can quite easily store and
compute even a matrix of this size, as a very large proportion of the matrix will have the
value 0.

Clustering News Articles

[249]

Currently, the class doesn't allow for its use in online learning. There are some
nuances in different applications that mean there isn't an obvious one-size-fits-all approach
that could be implemented. Instead, we can create our own subclass of Pipeline, which
allows us to use it for online learning. We first derive our class from Pipeline, as we only
need to implement a single function:

The only function we need to implement is the function, which is performed
by first doing all transformation steps, and then calling partial fit on the final step (which
should be the classifier or clustering algorithm). All other functions are the same as in the
normal Pipeline, class, so we refer (through class inheritance) to those.

We can now create a pipeline to use our in online learning, alongside
our . Other than using our new classes and

, this is the same process as used in the rest of this chapter, except we
only fit on a few documents at a time. The code is as follows:

There are some downsides to this approach. For one, we can't easily find out which words
are most important for each cluster. We can get around this by fitting another

 and taking the hash of each word. We then look up values by hash
rather than word. This is a bit cumbersome and defeats the memory gains from using
HashingVectorizer. Further, we can't use the parameter that we used earlier, as it
requires us to know what the features mean and to count them over time.

Clustering News Articles

[250]

We also can't use tf-idf weighting when performing training online. It
would be possible to approximate this and apply such weighting, but
again this is a cumbersome approach. is still a very
useful algorithm and a great use of hashing algorithms.

Summary
In this chapter, we looked at clustering, which is an unsupervised learning approach. We
use unsupervised learning to explore data, rather than for classification and prediction
purposes. In the experiment here, we didn't have topics for the news items we found on
reddit, so we were unable to perform classification. We used k-means clustering to group
together these news stories to find common topics and trends in the data.

In pulling data from reddit, we had to extract data from arbitrary websites. This was
performed by looking for large text segments, rather than a full-blown machine learning
approach. There are some interesting approaches to machine learning for this task that may
improve upon these results. In the Appendix of this book, I've listed, for each chapter,
avenues for going beyond the scope of the chapter and improving upon the results. This
includes references to other sources of information and more difficult applications of the
approaches in each chapter.

We also looked at a straightforward ensemble algorithm, EAC. An ensemble is often a good
way to deal with variance in the results, especially if you don't know how to choose good
parameters (which is always difficult with clustering).

Finally, we introduced online learning. This is a gateway to larger learning exercises,
including big data, which will be discussed in the final two chapters of this book. These
final experiments are quite large and require management of data as well as learning a
model from them.

As an extension on the work in this chapter, try implementing EAC to be an online learning
algorithm. This is not a trivial task and will involve some thought on what should happen
when the algorithm is updated. Another extension is to collect more data from more data
sources (such as other subreddits or directly from news websites or blogs) and look for
general trends.

In the next chapter, we'll step away from unsupervised learning and go back to
classification. We will look at deep learning, which is a classification method built on
complex neural networks.

111
Object Detection in Images

using Deep Neural Networks
We used basic neural networks in , Beating CAPTCHAs with Neural Networks with
Neural Networks. Research in neural networks is creating some of the most advanced and
accurate classification algorithms in many areas. The differences between the concepts
introduced in this chapter, versus those introduced in , Beating CAPTCHAs with
Neural Networks is around complexity. In this chapter, we look at deep neural networks,
those with many hidden layers, and also at more complex layer types for dealing with
specific types of information, such as images.

These advances have come on the back of improvements in computational power, allowing
us to train larger and more complex networks. However, the advances are much more than
simply throwing more computational power at the problem. New algorithms and layer
types have drastically improved performance, outside computational power. The cost is
that these new classifiers need more data to learn from than other data mining classifiers.

In this chapter, we will look at determining what object is represented in an image. The
pixel values will be used as input, and the neural network will then automatically find
useful combinations of pixels to form higher-level features. These will then be used for the
actual classification.

Overall, in this chapter, we will examine the following:

Classifying objects in images
Different types of deep neural networks
The TensorFlow and Keras libraries to build and train neural networks
Using a GPU to improve the speed of the algorithms
Using cloud-based services for added horse-power for data mining

Object Detection in Images using Deep Neural Networks

[252]

Object classification
Computer vision is becoming an important part of future technology. For example, we will
have access to self-driving cars in the very near future - car manufacturers are scheduled to
be releasing self-driving models in 2017 and are already partially self-driving. In order to
achieve this, the car's computer needs to be able to see around it; identify obstacles, other
traffic, and weather conditions; and then use that to plan a safe journey.

While we can easily detect whether there is an obstacle, for example using radar, it is also
important we know what that object is. If it is an animal on the road, we can stop and let it
move out of the way; if it is a building, this strategy won't work very well!

Use cases
Computer vision is used in many scenarios. Following are some examples where they
applications is very important.

Online map websites, such as Google Maps, use computer vision for a number of
reasons. One reason is to automatically blur any faces that they find, in order to
give some privacy to the people being photographed as part of their Street View
feature.
Face detection is also used in many industries. Modern cameras automatically
detect faces, as a means to improve the quality of photos taken (the user most
often wants to focus on a visible face). Face detection can also be used for
identification. For example, Facebook automatically recognises people in photos,
allowing for easy tagging of friends.
As we stated before, autonomous vehicles are highly dependent on computer
vision to recognise their path and avoid obstacles. Computer vision is one of the
key problems that is being addressed not only in research into autonomous
vehicles, not just for consumer use, but also in mining and other industries.
Other industries are using computer vision too, including warehouses examining
goods automatically for defects.

Object Detection in Images using Deep Neural Networks

[253]

The space industry is also using computer vision, helping to automate the
collection of data. This is critical for effective use of spacecraft, as sending a signal
from Earth to a rover on Mars can take a long time and is not possible at certain
times (for instance, when the two planets are not facing each other). As we start
dealing with space-based vehicles more frequently, and from a greater distance,
increasing the autonomy of these spacecraft is absolutely necessary and computer
vision is a key part of this.The following picture shows the Mars rover designed
and used by NASA; it made significant use of computer vision to identify its
surroundings on a strange, inhospitable planet.

Object Detection in Images using Deep Neural Networks

[254]

Application scenario
In this chapter, we will build a system that will take an image as an input and give a
prediction on what the object in it is. We will take on the role of a vision system for a car,
looking around at any obstacles in the way or on the side of the road. Images are of the
following form:

This dataset comes from a popular dataset called CIFAR-10. It contains 60,000 images that
are 32 pixels wide and 32 pixels high, with each pixel having a red-green-blue (RGB) value.
The dataset is already split into training and testing, although we will not use the testing
dataset until after we complete our training.

Object Detection in Images using Deep Neural Networks

[255]

The CIFAR-10 dataset is available for download at

Download the python version, which has already been converted to
NumPy arrays.

Opening a new Jupyter Notebook, we can see what the data looks like. First, we set up the
data filenames. We will only worry about the first batch to start with, and scale up to the
full dataset size towards the end;

Next, we create a function that can read the data stored in the batches. The batches have
been saved using pickle, which is a python library to save objects. Usually, we can just call

 on the file to get the object. However, there is a small issue with this
data: it was saved in Python 2, but we need to open it in Python 3. In order to address this,
we set the encoding to (even though we are opening it in byte mode):

Using this function, we can now load the batch dataset:

This batch is a dictionary containing the actual data in NumPy arrays, the corresponding
labels and filenames, and a note to say which batch it is (this is training batch 1 of 5, for
instance).

We can extract an image by using its index in the batch's data key:

Object Detection in Images using Deep Neural Networks

[256]

The image array is a NumPy array with 3,072 entries, from 0 to 255. Each value is the red,
green, or blue intensity at a specific location in the image.

The images are in a different format than what matplotlib usually uses (to display images),
so to show the image we first need to reshape the array and rotate the matrix. This doesn't
matter so much to train our neural network (we will define our network in a way that fits
with the data), but we do need to convert it for matplotlib's sake:

Now we can show the image using matplotlib:

The resulting image, a boat, is displayed:

The resolution of this image is quite poor—it is only 32 pixels wide and 32 pixels high.
Despite that, most people will look at the image and see a boat. Can we get a computer to
do the same?

Object Detection in Images using Deep Neural Networks

[257]

You can change the image index to show different images, getting a feel for the dataset's
properties.

The aim of our project, in this chapter, is to build a classification system that can take an
image like this and predict what the object in it is. Before we do that though, we will take a
detour to learn about the classifier we are going to use: Deep neural networks.

Deep neural networks
The neural networks we used in , Beating CAPTCHAs with Neural Networks, have
some fantastic theoretical properties. For example, only a single hidden layer is needed to
learn any mapping (although the size of the middle layer may need to be very, very big).
Neural networks were a very active area of research in the 1970s and 1980s due to this
theoretical perfection. However several issues caused them to fall out of favor, particularly
compared to other classification algorithms such as support vector machines. A few of the
major ones are listed here:

One of the main issues was that the computational power needed to run many
neural networks was more than other algorithms and more than what many
people had access to.
Another issue was training the networks. While the back propagation algorithm
has been known about for some time, it has issues with larger networks,
requiring a very large amount of training before the weights settle.

Each of these issues has been addressed in recent times, leading to a
resurgence in popularity of neural networks. Computational power is now
much more easily available than 30 years ago, and advances in algorithms
for training mean that we can now readily use that power.

Intuition
The aspect that differentiates deep neural networks from the more basic neural network we
saw in , Beating CAPTCHAs with Neural Networks, is size.

A neural network is considered deep when it has two or more hidden
layers. In practice, a deep neural network is often much larger, both in the
number of nodes in each layer and also the number of layers. While some
of the research of the mid -2000s focused on very large numbers of layers,
smarter algorithms are reducing the actual number of layers needed.

Object Detection in Images using Deep Neural Networks

[258]

The size is one differentiator, but new layer types and neural network structures are
assisting in creating deep neural networks for specific areas. We have already seen a feed-
forward neural network composed of dense layers. This means we have a series of layers,
in order, where each neuron from one layer is attached to each neuron from another layer.
Other types include:

Convolutional Neural Networks (CNN) for image analysis. In this case, a small
segment of the image is taken as a single input, and that input is passed onto a
pooling layer to combine these outputs. This helps with issues such as rotation
and translation of images. We will use these networks in this chapter.
Recurrent Neural Networks (RNN) for text and time-series analysis. In this case,
the previous state of the neural network is remembered and used to alter the
current output. Think of the preceding word in a sentence modifying the output
for the current word in the phrase: United States. One of the most popular types is
an LSTM recurrent network, standing for Long-Short Term Memory.
Autoencoders, which learn a mapping from the input, through a hidden layer
(usually with fewer nodes), back to the input. This finds a compression of the
input data, and this layer can be reused in other neural networks, reducing the
amount of labelled training data needed.

There are many, many more types of neural networks. Research into applications and
theory of deep neural networks is finding more and more forms of neural networks every
month. Some are designed for general purpose learning, some for specific tasks. Further,
there are multiple ways to combine layers, tweak parameters, and otherwise alter the
learning strategy. For example, dropout layers randomly reduce some weights to zero
during training, forcing all parts of the neural network to learn good weights.

Despite all these differences, a neural network is usually designed to take very basic
features as inputs—in the case of computer vision, it is simple pixel values. As that data is
combined and pushed through the network, these basic features combine into more
complex features. Sometimes, these features have little meaning to humans, but they
represent the aspects of the sample that the computer looks for to make its classification.

Object Detection in Images using Deep Neural Networks

[259]

Implementing deep neural networks
Implementing these deep neural networks can be quite challenging due to
their size. A bad implementation will take significantly longer to run than
a good one, and may not even run at all due to memory usage.

A basic implementation of a neural network might start by creating a node class and
collecting a set of these into a layer class. Each node is then connected to a node in the next
layer using an instance of an Edge class. This type of implementation, a class-based one, is
good to show how networks operate but too inefficient for larger networks. Neural
networks simply have too many moving parts for this strategy to be efficient.

Instead, most neural networks operations can be expressed as
mathematical expressions on matrices. The weights of the connections
between one network layer and the next can be represented as a matrix of
values, where the rows represent nodes in the first layer and the columns
represent the nodes in the second layer (the transpose of this matrix is
used sometimes too). The value is the weight of the edge between one
layer and the next. A network can then be defined as a set of these weight
matrices. In addition to the nodes, we add a bias term to each layer, which
is basically a node that is always on and connected to each neuron in the
next layer.

This insight allows us to use matrix operations to build, train, and use neural networks, as
opposed to creating a class-based implementation. These mathematical operations are great,
as many great libraries of highly optimised code have been written that we can use to
perform these computations as efficiently as we can.

The scikit-learn implementation that we used in , Beating CAPTCHAs with Neural
Networks, does contain some features for building neural networks but lacks several recent
advances in the field. For larger and more customised networks, though, we need a library
that gives us a bit more power. We will use the Keras library instead to create our deep
neural network.

In this chapter, we will start by implementing a basic neural network with Keras and then
(nearly) replicate our experiment in , Beating CAPTCHAs with Neural Networks, on
predicting which letter is in an image. Finally, we will use a much more complex
convolution neural network to perform image classification on the CIFAR dataset, which
will also include running this on GPUs rather than CPUs to improve the performance.

Object Detection in Images using Deep Neural Networks

[260]

Keras is a high-level interface to using a graph-computation library for implementing deep
neural networks. Graph-computation libraries outline a series of operations and then later
compute the values. These are great for matrix operations because they can be used to
represent data flows, distribute those data flows across multiple systems and perform other
optimisations. Keras can use either of two graph-computation libraries under the hood. The
first is called Theano, which is a little older and has a strong following (and was used in the
first edition of this book), and the second is TensorFlow, released recently by Google and is
the library that powers much of their deep learning. Ultimately, you can use either library
in this chapter.

An Introduction to TensorFlow
TensorFlow is a graph computation library designed by engineers at Google, and is starting
to power many of Google's recent advances in deep learning and artificial intelligence.

A graph computation library has two steps. They are listed below:

Defining the sequence (or more complex graphs) of operations that take the input1.
data, operate on it, and convert to outputs.
Compute on the graph obtained from step 1 with a given input.2.

Many programmers don't use this type of programming day-to-day, but most of them
interact with a related system that does. Relational databases, specifically SQL-based ones,
use a similar concept called the declarative paradigm. While a programmer might define a

 query on a database with a clause, the database interprets that and creates
an optimised query based on a number of factors, such as whether the clause is
applied to a primary key, the format the data is stored in, and other factors. The
programmer defines what they want and the system determines how to do it.

You can install TensorFlow using Anaconda: conda install tensorflow
For more options, Google has a detailed installation page at

Using TensorFlow, we can define many types of functions working on scalars, arrays, and
matrices, as well as other mathematical expressions. For instance, we can create a graph that
computes the values of a given quadratic equation:

Object Detection in Images using Deep Neural Networks

[261]

This y object is a Tensor object. It does not yet have a value as this hasn't been computed.
All we have done is create a graph that states:

When we do compute y, first take the square the value of x and multiply it by a, add b times x to it,
and then add c to the result.

The graph itself can be viewed through TensorFlow. Here is some code to visualise this
graph within a Jupyter Notebook, courtesy of StackOverflow user Yaroslav Bulatov (see
this answer:):

Object Detection in Images using Deep Neural Networks

[262]

We can then perform the actual visualisation using this code in a new cell:

The results show how these operations are linked in a directed graph. The visualisation
platform is called TensorBoard, which comes with TensorFlow:

Object Detection in Images using Deep Neural Networks

[263]

When we want to compute a value for y, we need to pass a value for x through the other
nodes in the graph, these are called OpNodes in the above graph, short for Operation Node.

To this point, we have defined the graph itself. The next step is to compute the values. We
can do this a number of ways, especially considering x is a Variable. To compute y, using
the current value of x, we create a TensorFlow Session object and then ask it to run y:

The first line initialises the variables. TensorFlow lets you specify scopes of operations and
namespaces. At this point, we are just using the global namespace, and this function is a
handy shortcut to initialise that scope properly, which can be thought of as a step needed
for TensorFlow to compile the graph.

The second creates a new session that will run the model itself. The result
from is itself an operation on the graph, and
must be executed to happen. The next line actually runs the variable y, which computes the
necessary OpNodes needed to compute the value of y. In our case, that is all of the nodes
but it is possible that larger graphs might not need all nodes computed - TensorFlow will do
just enough work to get the answer and no more.

If you get an error that is not defined,
replace it with - the interface was recently
changed.

Printing the result gives us our value of 3.

We can also do other operations, such as change the value of x. For instance, we can create
an assign operation, which assigns a new value to an existing Variable. In this example, we
change the value of x to 10 and then compute y, which results in 548.

Object Detection in Images using Deep Neural Networks

[264]

While this simple example may not seem much more powerful than what we can already
do with Python, TensorFlow (and Theano) have large amounts of distribution options for
computing larger networks over many computers and optimisations for doing it efficiently.
Both libraries also contain extra tools for saving and loading networks, including values,
which lets us save models created in these libraries.

Using Keras
TensorFlow is not a library to directly build neural networks. In a similar way, NumPy is
not a library to perform data mining; it just does the heavy lifting and is generally used
from another library. TensorFlow contains a built-in library, referred to as TensorFlow
Learn to build networks and perform data mining. Other libraries, such as Keras, are also
built with this in mind and use TensorFlow in the backend.

Keras implements a number of modern types of neural network layers and the building
blocks for building them. In this chapter, we will use convolution layers which are designed
to mimic the way in which human vision works. They use small collections of connected
neurons that analyse only a segment of the input values - in this case, an image. This allows
the network to deal with standard alterations such as dealing with translations of images. In
the case of vision-based experiments, an example of an alteration dealt with by convolution
layers is translating the image.

In contrast, a traditional neural network is often heavily connected—all
neurons from one layer connect to all neurons in the next layer. This is
referred to as a dense layer.

The standard model for neural networks in Keras is a Sequential model, which is created
by passing a list of layers. The input (X_train) is given to the first layer, and its output given
to the next layer and so on, in a standard feed-forward configuration.

Building a neural network in Keras is significantly easier than building it using just
TensorFlow. Unless you are doing highly customised modifications to the neural network
structure, I strongly recommend using Keras.

To show the basics of using Keras for neural networks, we will implement a basic network
to lean on the Iris dataset, which we saw in , Getting Started with Data Mining. The
Iris dataset is great for testing new algorithms, even complex ones such as deep neural
networks.

Object Detection in Images using Deep Neural Networks

[265]

First, open a new Jupyter Notebook. We will come back to the Notebook with the CIFAR
data, later in the chapter.

Next, we load the dataset:

When dealing with libraries like TensorFlow, it is best to be quite explicit about data types.
While Python will happily convert from one numerical data type to another implicitly,
libraries like TensorFlow are wrappers around lower-level code (in this case, C++). These
libraries are not able to always convert between numerical data types.

Our output is currently a single array of categorical values (0, 1 or 2 depending on the
class). Neural networks can be developed to output data in this format, but the normal
convention is for the neural network to have n outputs, where n in the number of classes.
Due to this, we use one-hot encoding to convert our categorical y into a one-hot encoded

:

We then split into training and testing datasets:

Next, we build our network by creating the different layers. Our dataset contains four input
variables and three output classes. This gives us the size of the first and last layer, but not
the layers in between. Playing around with this figure will give different results, and it is
worth trailing different values to see what happens. We will create a small network to start
with, with the following dimensions:

Object Detection in Images using Deep Neural Networks

[266]

Next, we create our hidden layer and our output layer (the input layer is implicit). For this
example we will use Dense layers:

I encourage you to play with the activation value, and see how that affects the results. The
values here are great defaults if you have no further information about your problem. That
is, use for hidden layers, and for the output layer.

We then combine the layers into a Sequential model:

One necessary step from here is to compile the network, which creates the graph. In the
compile step, we were given information on how the network will be trained and
evaluated. The values here define what exactly it is that the neural network is trying to train
to reduce, in the case below, it is the mean squared error between the output neurons and
their expected values. The choice of optimizer largely affects how efficiently it can do this,
often with a trade-off between speed and memory usage.

We then train our model using the function. Keras models return a history object from
, that allows us see the data at a fine-grained level.

You will get quite a lot of output. The neural network will train 10 epochs, which are
training cycles of taking the training data, running it through the neural network, updating
the weights and evaluating the results. If you investigate the history object (try

) you will see the loss function's score after each of these epochs
(lower is better). Also included is the accuracy, where higher is better. You will probably
also notice that it hasn't really improved that much.

We can plot out the history object using :

Object Detection in Images using Deep Neural Networks

[267]

While the training loss is decreasing, it is not decreasing much. This is one issue with neural
networks - they train slowly. By default, the fit function will only perform 10 epochs, which
is nowhere near enough for nearly any application. To see this, use the neural network to
predict the test set and run a classification report:

Object Detection in Images using Deep Neural Networks

[268]

The results are quite poor, with an overall f1-score of 0.07, and the classifier only predicting
class 2 for all instances. At first, it might seem that neural networks are not that great but
let's have a look at what happens when we train for 1000 epochs:

Visualizing the loss per epoch again, a very useful visualization when running iterative
algorithms like neural networks, using the above code shows a very different story:

Finally, we perform a classification report again to see the results:

Perfect.

Object Detection in Images using Deep Neural Networks

[269]

Convolutional Neural Networks
To get started with image analysis with Keras, we are going to reimplement the example we
used in , Beating CAPTCHAs with Neural Networks, to predict which letter was
represented in an image. We will recreate the dense neural network we used in ,
Beating CAPTCHAs with Neural Networks. To start with, we need to enter our dataset
building code again in our notebook. For a description of what this code does, refer to

, Beating CAPTCHAs with Neural Networks (remember to update the file location of the
Coval font):

Object Detection in Images using Deep Neural Networks

[270]

After rerunning all of this code, you'll have a dataset similar to , Beating
CAPTCHAs with Neural Networks experiment. Next, instead of using scikit-learn to do our
neural network, we will use Keras.

First, we create our two Dense layers and combine them in a Sequential model. I've chosen
to put 100 neurons in the hidden layer.

Object Detection in Images using Deep Neural Networks

[271]

Then, we fit the model. As before, you will want to have quite a larger number of epochs.
I've used 1000 again, if you want better results, you can increase this number.

You can also collect the resulting history object, like we did with the Iris example, to
investigate the training further.

Again, perfect.

At least, it was on my machine but your results may differ slightly.

GPU optimization
Neural networks can grow quite large in size. This has some implications for memory use;
however, efficient structures such as sparse matrices mean that we don't generally run into
problems fitting a neural network in memory.

The main issue when neural networks grow large is that they take a very
long time to compute. In addition, some datasets and neural networks will
need to run many epochs of training to get a good fit for the dataset.

The neural network we will train in this chapter takes more than 8 minutes per epoch on
my reasonably powerful computer, and we expect to run dozens, potentially hundreds, of
epochs. Some larger networks can take hours to train a single epoch. To get the best
performance, you may be considering thousands of training cycles.

The scale of neural networks leads to long training times.

One positive is that neural networks are, at their core, full of floating point operations.
There are also a large number of operations that can be performed in parallel, as neural
network training is composed of mainly matrix operations. These factors mean that
computing on GPUs is an attractive option to speed up this training.

Object Detection in Images using Deep Neural Networks

[272]

When to use GPUs for computation
GPUs were originally designed to render graphics for display. These graphics are
represented using matrices and mathematical equations on those matrices, which are then
converted into the pixels that we see on our screen. This process involves lots of
computation in parallel. While modern CPUs may have a number of cores (your computer
may have 2, 4, or even 16—or more!), GPUs have thousands of small cores designed
specifically for graphics.

A CPU is better for sequential tasks, as the cores tend to be individually faster and tasks
such as accessing the computer's memory are more efficient. It is also, honestly, easier to
just let the CPU do the heavy lifting. Almost every machine learning library defaults to
using the CPU, and there is extra work involved before you can use the GPU for computing.
The benefits can be quite significant.

GPUs are therefore better suited for tasks in which there are lots of small operations on
numbers that can be performed at the same time. Many machine learning tasks are like this,
lending themselves to efficiency improvements through the use of a GPU.

Getting your code to run on a GPU can be a frustrating experience. It depends greatly on
what type of GPU you have, how it is configured, your operating system, and whether you
are prepared to make some low-level changes to your computer.

Luckily, Keras will automatically use a GPU for operations, if the
operation suits and a GPU can be found (and if you use TensorFlow as the
backend). However, you still need to setup your computer such that the
GPU can be found by Keras and TensorFlow.

There are three main avenues to take:

The first is to look at your computer, search for tools and drivers for your GPU
and operating system, explore some of the many tutorials out there, and find one
that fits your scenario. Whether this works depends on what your system is like.
That said, this scenario is much easier than it was a few years ago, with better
tools and drivers available to perform GPU-enabled computation.
The second avenue is to choose a system, find good documentation on setting it
up and buy a system to match. This will work better, but can be fairly
expensive—in most modern computers, the GPU is one of the most expensive
parts. This is especially true if you want to get great performance out of the
system—you'll need a really good GPU, which can be very expensive. If you are a
business (or have larger amounts of money to spend), you can buy high-end
GPUs specifically for deep learning and talk more directly to vendors to ensure
you get the right hardware.

Object Detection in Images using Deep Neural Networks

[273]

The third avenue is to use a virtual machine, which is already configured for such
a purpose. For example, Altoros Systems has created such a system that runs on
Amazon's Web Services. The system will cost you money to run, but the price is
much less than that of a new computer. Depending on your location, the exact
system you get and how much you use it, you are probably looking at less than
$1 an hour, and often much, much less. If you use spot instances in Amazon's
Web Services, you can run them for just a few cents per hour (although, you will
need to develop your code to run on spot instances separately).

If you aren't able to afford the running costs of a virtual machine, I
recommend that you look into the first avenue, with your current system.
You may also be able to pick up a good second-hand GPU from family or
a friend who constantly updates their computer (gamer friends are great
for this!).

Running our code on a GPU
We are going to take the third avenue in this chapter and create a virtual machine based on
Altoros Systems' base system. This will run on an Amazon's EC2 service. There are many
other Web services to use, and the procedure will be slightly different for each. In this
section, I'll outline the procedure for Amazon.

If you want to use your own computer and have it configured to run GPU-enabled
computation, feel free to skip this section.

You can get more information on how this was set up, see

To start with, go to the AWS console at: 1.

Log in with your Amazon account. If you don't have one, you will be prompted2.
to create one, which you will need to do in order to continue.
Next, go to the EC2 service console at: 3.

Click on Launch Instance and choose N. California as your location in the drop-4.
down menu at the top-right.

Object Detection in Images using Deep Neural Networks

[274]

Click on Community AMIs and search for Ubuntu x64 AMI with TensorFlow5.
(GPU), which is the machine created by Altoros Systems. Then, click on Select.
On the next screen, choose g2.2xlarge as the machine type and click on Review
and Launch. On the next screen, click on Launch.
At this point, you will be charged, so please remember to shut down your6.
machines when you are done with them. You can go to the EC2 service, select the
machine, and stop it. You won't be charged for machines that are not running.
You'll be prompted with some information on how to connect to your instance. If7.
you haven't used AWS before, you will probably need to create a new key pair to
securely connect to your instance. In this case, give your key pair a name,
download the pemfile, and store it in a safe place—if lost, you will not be able to
connect to your instance again!
Click on Connect for information on using the pem file to connect to your8.
instance. The most likely scenario is that you will use ssh with the following
command:

Setting up the environment
Next, we need to get our code onto the machine. There are many ways to get this file onto
your computer, but one of the easiest is to just copy-and-paste the contents.

To start with, open the Jupyter Notebook we used before (on your computer, not on the
Amazon Virtual Machine). On the Notebook itself is a menu. Click on File and then
Download as. Select Python and save it to your computer. This procedure downloads the
code in the Jupyter Notebook as a python script that you can run from the command line.

Open this file (on some systems, you may need to right-click and open with a text editor).
Select all of the contents and copy them to your clipboard.

On the Amazon Virtual Machine, move to the home directory and open nano with a new
filename:

$ cd~/

$ nano chapter11script.py

Object Detection in Images using Deep Neural Networks

[275]

The nano program will open, which is a command-line text editor.

With this program open, paste the contents of your clipboard into this file. On some
systems, you may need to use a file option of the ssh program, rather than pressing Ctrl+ V
to paste.

In nano, press Ctrl+ O to save the file on the disk and then Ctrl+ X to exit the program.

You'll also need the font file. The easiest way to do this is to download it again from the
original location. To do this, enter the following:

$ wget
http://openfontlibrary.org/assets/downloads/bretan/680bc56bbeeca95353ede363
a3744fdf/bretan.zip

$ sudo apt-get install unzip

$ unzip -p bretan.zip

While still in the virtual machine, you can run the program with the following command:

$ python chapter11script.py

The program will run through as it would in the Jupyter Notebook and the results will print
to the command line.

The results should be the same as before, but the actual training and testing of the neural
network will be much faster. Note that it won't be that much faster in the other aspects of
the program—we didn't write the CAPTCHA dataset creation to use a GPU, so we will not
obtain a speedup there.

You may wish to shut down the Amazon virtual machine to save some
money; we will be using it at the end of this chapter to run our main
experiment, but will be developing the code on your main computer first.

Application
Back on your main computer now, open the first Jupyter Notebook we created in this
chapter—the one that we loaded the CIFAR dataset with. In this major experiment, we will
take the CIFAR dataset, create a deep convolution neural network, and then run it on our
GPU-based virtual machine.

Object Detection in Images using Deep Neural Networks

[276]

Getting the data
To start with, we will take our CIFAR images and create a dataset with them. Unlike
previously, we are going to preserve the pixel structure—that is, in rows and columns. First,
load all the batches into a list:

The last line, the break, is to test the code—this will drastically reduce the number of
training examples, allowing you to quickly see if your code is working. I'll prompt you later
to remove this line after you have tested that the code works.

Next, create a dataset by stacking these batches on top of each other. We use NumPy's
vstack, which can be visualised as adding rows to the end of the array:

We then normalise the dataset to the range 0 to 1 and then force the type to be a 32-bit float
(this is the only datatype the GPU-enabled virtual machine can run with):

We then do the same with the classes, except we perform a hstack, which is similar to
adding columns to the end of the array. We could then use the OneHotEncoder to turn this
into a one-hot array. I'll show an alternate method here using a utility function present in
Keras, but the result is the same either way:

Next, we split the dataset into training and testing sets:

Object Detection in Images using Deep Neural Networks

[277]

Next, we reshape the arrays to preserve the original data structure. The original data was
32-by-32-pixel images, with 3 values per pixel (for the red, green, and blue values). While
standard feed-forward neural networks only take a single array of input data (see the
CAPTCHA example), Convolutional Neural Networks are built for images and accept 3-
dimensional image data (2-D image, and another dimension containing colour depth).

We now have a familiar training and testing dataset, along with the target classes for each.
We can now build the classifier.

Creating the neural network
We will now build the convolutional neural network. I have performed some tinkering and
found a layout that works well, but feel free to experiment with more layers (or fewer),
layers of different types and different sizes. Smaller networks train faster, but larger
networks can achieve better results.

First, we create the layers of our neural network:

Object Detection in Images using Deep Neural Networks

[278]

We use dense layers for the last three layers as per a normal feed-forward neural network,
but before that, we use convolution layers combined with pooling layers. We have three
sets of these.

For each pair of Convolution2D and MaxPooling2D layers, the following happens:

The Convolution2D network fetches patches of the input data. These are passed1.
through a filter, a matrix transformation akin to the kernel operator Support
Vector Machines use. A filter is a smaller matrix, of size k by n (specified as 3x3
in the Convolution2D initialiser above) that is applied to each k by n pattern
found in the image. The result is a convolved feature.
The MaxPooling2D layer takes the results from the Convolution2D layer and2.
finds the maximum value for each convolved feature.

While this does discard lots of information, this actually helps for image detection. If the
object of an image is a few pixels to the right, a standard neural network will consider it a
completely new image. In contrast, the convolution layer will find it and report almost the
same output (depending, of course, on a wide variety of other factors).

After passing through these pairs layers, the features that go into the dense part of the
network are meta-features that represent abstract concepts of the image, rather than specific
qualities. Often these can be visualised, resulting in features like a little bit of a line pointing
up.

Next, we put these layers together to build our neural network and train it. This training
will take substantially longer than previous training. I recommend starting with 10 epochs,
make sure the code works all the way through, and then rerun with 100 epochs. Also, once
you have confirmed that the code works and you get predictions out, go back and remove
the line we put in when creating the dataset (it is in the batches loop). This will allow
the code to train on all of the samples, not just the first batch.

Finally, we can predict with the network and evaluate.

Object Detection in Images using Deep Neural Networks

[279]

After running for 100 epochs, it is still not quite perfect in this case, but still an excellent
result. If you have the time (say, overnight), try running the code for 1000 epochs. There is
an increase in accuracy but a diminishing return on time invested. A (not so) good rule of
thumb is that to halve the error, you need to double the training time.

Putting it all together
Now that we have our network code working, we can train it with our training dataset on
the remote machine. If you used your local machine to run the neural network, you can skip
this section.

We need to upload the script to our virtual machine. As with before, click on File|
Download as, Python, and save the script somewhere on your computer. Launch and
connect to the virtual machine and upload the script as you did earlier (I called my script

—if you named yours differently, just update the following code).

The next thing we need is for the dataset to be on the virtual machine. The easiest way to do
this is to go to the virtual machine and type:

$ wget http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz

This will download the dataset. Once that has downloaded, you can extract the data to the
Data folder by first creating that folder and then unzipping the data there:

$ mkdir Data

$ tar -zxf cifar-10-python.tar.gz -C Data

Finally, we can run our example with the following:

$ python3 chapter11cifar.py

The first thing you'll notice is a drastic speedup. On my home computer, each epoch took
over 100 seconds to run. On the GPU-enabled virtual machine, each epoch takes just 16
seconds! If we tried running 100 epochs on my computer, it would take nearly three hours,
compared to just 26 minutes on the virtual machine.

This drastic speedup makes trialing different models much faster. Often with trialing
machine learning algorithms, the computational complexity of a single algorithm doesn't
matter too much. An algorithm might take a few seconds, minutes, or hours to run. If you
are only running one model, it is unlikely that this training time will matter too
much—especially as prediction, as with most machine learning algorithms, is quite quick
and that is where a machine learning model is mostly used.

Object Detection in Images using Deep Neural Networks

[280]

However, when you have many parameters to run, you will suddenly need to train
thousands of models with slightly different parameters—suddenly, these speed increases
matter much more.

After 100 epochs of training, taking a whole 26 minutes, you will get a printout of the final
result:

0.8497

Not too bad! We can increase the number of epochs of training to improve this further or
we might try changing the parameters instead; perhaps, more hidden nodes, more
convolution layers, or an additional dense layer. There are other types of layers in Keras
that could be tried too; although generally, convolution layers are better for vision.

Summary
In this chapter, we looked at using deep neural networks, specifically convolution
networks, in order to perform computer vision. We did this through the Keras package,
which uses Tensorflow or Theano as its computation backend. The networks were relatively
easy to build with Kera's helper functions.

The convolution networks were designed for computer vision, so it shouldn't be a surprise
that the result was quite accurate. The final result shows that computer vision is indeed an
effective application using today's algorithms and computational power.

We also used a GPU-enabled virtual machine to drastically speed up the process, by a factor
of almost 10 for my machine. If you need extra power to run some of these algorithms,
virtual machines by cloud providers can be an effective way to do this (usually for less than
a dollar per hour)—just remember to turn them off when you are done!

To extend the work in this chapter, try play with the structure of the network to increase the
accuracy further than what we obtained here. Another method that can be used to improve
the accuracy is to create more data, either by taking your own pictures (slow) or by
modifying the existing ones (much faster). To do the modification, you can flip images
upside down, rotate, shear and so on. Keras has a function for doing this that is quite useful.
See the documentation at

Object Detection in Images using Deep Neural Networks

[281]

Another area worth investigating is variations in neural network structure, more nodes,
fewer nodes, more layers and so on. Also experiment with different activation types,
different layer types and different combinations.

This chapter's focus was on a very complex algorithm. Convolution networks take a long
time to train and have many parameters to train. Ultimately, the size of the data was small
in comparison; although it was a large dataset, we can load it all in memory without even
using sparse matrices. In the next chapter, we go for a much simpler algorithm, but a much,
much larger dataset that can't fit in memory. This is the basis of Big Data and it underpins
applications of data mining in many large industries such as mining and social networks.

112
Working with Big Data

The amount of data is increasing at an exponential rate. Today's systems are generating and
recording information on customer behavior, distributed systems, network analysis,
sensors, and many, many more sources. While the current big trend of mobile data is
pushing the current growth, the next big thing—the Internet of Things (IoT)—is going to
further increase the rate of growth.

What this means for data mining is a new way of thinking. Complex algorithms with high
runtimes need to be improved or discarded, while simpler algorithms that can deal with
more samples are becoming more popular to use. As an example, while support vector
machines are great classifiers, some variants are difficult to use on very large datasets. In
contrast, simpler algorithms such as logistic regression can manage more easily in these
scenarios.

This complexity versus distribution issue is just one of the reasons why deep neural
networks (DNNs) have become so popular. You can create very complex models using
DNNs, but you can also distribute the workload for training them across many computers
quite easily.

In this chapter, we will investigate the following:

Big data challenges and applications
The MapReduce paradigm
Hadoop MapReduce
mrjob, a Python library to run MapReduce programs on Amazon's AWS
infrastructure

Working with Big Data

[283]

Big data
What makes big data different? Most big data proponents talk about the four Vs of big data:

Volume: The amount of data that we generate and store is growing at an
increasing rate, and predictions of the future generally only suggest further
increases. Today's multi-gigabyte-sized hard drives will turn into exabyte-sized
drives in a few years, and network throughput traffic will be increasing as well.
The signal-to-noise ratio can be quite difficult, with important data being lost in
the mountain of non-important data.
Velocity: While related to volume, the velocity of data is increasing too. Modern
cars have hundreds of sensors that stream data into their computers, and
information from these sensors needs to be analyzed at a sub-second level to
operate the car. It isn't just a case of finding answers in the volume of data; those
answers often need to come quickly. In some cases, we also simply do not have
enough disk space to store data, meaning we also need to make decisions on
what data to keep for later analysis.
Variety: Nice datasets with clearly defined columns are only a small fraction of
the datasets that we have these days. Consider a social media post that may have
text, photos, user mentions, likes, comments, videos, geographic information, and
other fields. Simply ignoring parts of this data that don't fit your model will lead
to a loss of information, but integrating that information itself can be very
difficult.
Veracity: With this increase in the amount of data, it can be hard to determine
whether the data is being correctly collected—whether it is outdated, noisy,
contains outliers—or generally whether it is useful at all. Being able to trust the
data is hard when a human can't reliably verify it. External datasets are being
increasingly merged into internal ones too, giving rise to more troubles relating
to the veracity of data.

These main four Vs (others have proposed additional Vs) outline why big data is different
from just lots of data. At these scales, the engineering problem of working with data is often
more difficult—let alone the analysis. While there are lots of snake oil salesmen that
overstate a particular product's ability to analyze big data, it is hard to deny the engineering
challenges and the potential of big data analytics.

Working with Big Data

[284]

The algorithms we have used so far in the book load the dataset into memory and then
work on the in-memory version. This gives a large benefit in terms of speed of computation
(because using computer memory is faster than using hard drives), as it is much faster to
compute on in-memory data than having to load a sample before we use it. In addition, in-
memory data allows us to iterate over the data many times, thereby improving our machine
learning model.

In big data, we can't load our data into memory. In many ways, this is a good definition for
whether a problem is big data or not—if the data can fit in the memory on your computer,
you aren't dealing with a big data problem.

When looking at the data you create, such as log data from your
company's internal applications, it might be tempting to simply throw it
all into a file, unstructured, and use big-data concepts later to analyze it. It
is best not to do this; instead, you should use structured formats for your
own datasets. The reason is that the four Vs we just outlined are
actually problems that need to be solved to perform data analysis, not goals
to strive for!

Applications of big data
There are many use cases for big data, in public and private sectors.

The most common experience people have using a big-data-based system is in Internet
search, such as Google. To run these systems, a search needs to be carried out over billions
of websites in a fraction of a second. Doing a basic text-based search would be inadequate to
deal with such a problem. Simply storing the text of all those websites is a large problem. In
order to deal with queries, new data structures and data mining methods need to be created
and implemented specifically for this application.

Working with Big Data

[285]

Big data is also used in many other scientific experiments such as the Large Hadron
Collider, part of which is pictured next. It stretches over 27 kilometers and contains 150
million sensors monitoring hundreds of millions of particle collisions per second. The data
from this experiment is massive, with 25 petabytes created daily, after a filtering process (if
filtering were not used, there would be 150 million petabytes per year). Analysis on data
this big has led to amazing insights about our universe, but it has been a significant
engineering and analytics challenge.

Governments are increasingly using big data too, to track populations, businesses, and
other aspects related to their country. Tracking millions of people and billions of
interactions (such as business transactions or health spending) leads to a need for big data
analytics in many government organizations.

Traffic management is a particular focus of many governments around the world, who are
tracking traffic using millions of sensors to determine which roads are the most congested
and predicting the impact of new roads on traffic levels. These management systems will
link with data from autonomous cars in the near future, leading to even more data about
traffic conditions in real time. Cities that make use of this data will find that their traffic
flows more freely.

Working with Big Data

[286]

Large retail organizations are using big data to improve customer experience and reduce
costs. This involves predicting customer demand in order to have the correct level of
inventory, upselling customers with products they may like to purchase, and tracking
transactions to look for trends, patterns, and potential frauds. Companies that automatically
create great predictions can have higher sales at lower costs.

Other large businesses are also leveraging big data to automate aspects of their business
and improve their offering. This includes leveraging analytics to predict future trends in
their sector and tracking external competitors. Large businesses also use analytics to
manage their own employees—tracking employees to look for signs that an employee may
leave the company, in order to intervene before they do.

The information security sector is also leveraging big data in order to look for malware
infections in large networks, by monitoring network traffic. This can include looking for
odd traffic patterns, evidence of malware spreading, and other oddities. Advanced
Persistent Threats (APTs) is another problem, where a motivated attacker will hide their
code within a large network to steal information or cause damage over a long period of
time. Finding APTs is often a case of forensically examining many computers, a task which
simply takes too long for a human to effectively perform themselves. Analytics helps
automate and analyze these forensic images to find infections.

Big data is being used in an increasing number of sectors and applications, and this trend is
likely to only continue.

MapReduce
There are a number of concepts to perform data mining and general computation on big
data. One of the most popular is the MapReduce model, which can be used for general
computation on arbitrarily large datasets.

MapReduce originates from Google, where it was developed with distributed computing in
mind. It also introduces fault tolerance and scalability improvements. The original research
for MapReduce was published in 2004, and since then there have been thousands of
projects, implementations, and applications using it.

While the concept is similar to many previous concepts, MapReduce has become a staple in
big data analytics.

Working with Big Data

[287]

There are two major stages in a MapReduce job.

The first is Map, by which we take a function and a list of items, and apply that1.
function to each item. Put another way, we take each item as the input to the
function and store the result of that function call:

The second step is Reduce, where we take the results from the map step and2.
combine them using a function. For statistics, this could be as simple as adding all
the numbers together. The reduce function in this scenario is an add function,
which would take the previous sum, and add the new result:

Working with Big Data

[288]

After these two steps, we will have transformed our data and reduced it to a final result.

MapReduce jobs can have many iterations, some of which are only Map jobs, some only
Reduce jobs and some iterations with both a Map and Reduce step. Let us now have a look
at some more tangible examples, first using built-in python functions and then using a
specific tool for MapReduce jobs.

The intuition behind MapReduce
MapReduce has two main steps: the step and the step. These are built on the
functional programming concepts of mapping a function to a list and reducing the result.
To explain the concept, we will develop code that will iterate over a list of lists and produce
the sum of all numbers in those lists.

Working with Big Data

[289]

There are also and steps in the MapReduce paradigm, which we will see
later.

To start with, the Map step takes a function and applies it to each element in a list. The
returned result is a list of the same size, with the results of the function applied to each
element.

To open a new Jupyter Notebook, start by creating a list of lists with numbers in each
sublist:

Next, we can perform a using the sum function. This step will apply the sum function
to each element of a:

While is a generator (the actual value isn't computed until we ask for it), the preceding
step is approximately equal to the following code:

The step is a little more complicated. It involves applying a function to each
element of the returned result, to some starting value. We start with an initial value and
then apply a given function to that initial value and the first value. We then apply the given
function to the result and the next value, and so on

We start by creating a function that takes two numbers and adds them together.

We then perform the reduce. The signature of is:
, where the function is applied at each step to the sequence. In the first step, the

initial value is used as the first value rather than the first element of the list:

Working with Big Data

[290]

The result, 25, is the sum of each of the values in the sums list and is consequently the sum
of each of the elements in the original array.

The preceding code is similar to the following:

In this simple example, our code would be greatly simplified if it didn't use the MapReduce
paradigm, but the real gains come from distributing the computation. For instance, if we
have a million sublists and each of those sublists contains a million elements, we can
distribute this computation over many computers.

In order to do this, we distribute the step by segmenting out data. For each of the
elements in our list, we send it, along with a description of our function, to a computer. This
computer then returns the result to our main computer (the master).

The master then sends the result to a computer for the step. In our example of a
million sublists, we would send a million jobs to different computers (the same computer
may be reused after it completes our first job). The returned result would be just a single list
of a million numbers, which we then compute the sum of.

The result is that no computer ever needed to store more than a million numbers, despite
our original data having a trillion numbers in it.

A word count example
Any actual implementation of MapReduce is a little more complex than just using a and

 step. Both steps are invoked using keys, which allows for the separation of data and
tracking of values.

The map function takes a key-value pair and returns a list of key/value
pairs. The keys for the input and output don't necessarily relate to each
other.

Working with Big Data

[291]

For example, for a MapReduce program that performs a word count, the input key might be
a sample document's ID value, while the output key would be a given word. The input
value would be the text of the document and the output value would be the frequency of
each word. We split the document to get the words, and then yield each of the word, count
pairs. The word here is the key, with the count being the value in MapReduce terms:

Have a really, really big dataset? You can just do when
you come across a new word and then combine the ones in the shuffle step
rather than count within the map step. Where you place it depends on
your dataset size, per-document size, network capacity, and a whole range
of factors. Big data is a big engineering problem and to get the maximum
performance out of a system, you'll need to model how data will flow
throughout the algorithm.

By using the word as the key, we can then perform a shuffle step, which groups all the
values for each key:

The final step is the reduce step, which takes a key-value pair (the value, in this case, is
always a list) and produces a key-value pair as a result. In our example, the key is the word,
the input list is the list of counts produced in the shuffle step, and the output value is the
sum of the counts:

Working with Big Data

[292]

To see this in action, we can use the 20 newsgroups dataset, which is provided in scikit-
learn. This dataset is not big data, but we can see the concepts in action here:

We then apply our map step. We use enumerate here to automatically generate document
IDs for us. While they aren't important in this application, these keys are important in other
applications:

The actual result here is just a generator; no actual counts have been produced. That said, it
is a generator that emits (word, count) pairs.

Next, we perform the shuffle step to sort these word counts:

This, in essence, is a MapReduce job; however, it is only running on a single thread,
meaning we aren't getting any benefit from the MapReduce data format. In the next section,
we will start using Hadoop, an open source provider of MapReduce, to start getting the
benefits of this type of paradigm.

Hadoop MapReduce
Hadoop is a set of open source tools from Apache that includes an implementation of
MapReduce. In many cases, it is the de-facto implementation used by many. The project is
managed by the Apache group (who are responsible for the famous web server of the same
name).

The Hadoop ecosystem is quite complex, with a large number of tools. The main
component we will use is Hadoop MapReduce. Other tools for working with big data that
are included in Hadoop are as follows:

Hadoop Distributed File System (HDFS): This is a file system that can store files
over many computers, with the goal of being robust against hardware failure
while providing high bandwidth.
YARN: This is a method for scheduling applications and managing clusters of
computers.

Working with Big Data

[293]

Pig: This is a higher level programming language for MapReduce. Hadoop
MapReduce is implemented in Java, and Pig sits on top of the Java
implementation, allowing you to write programs in other languages—including
Python.
Hive: This is for managing data warehouses and performing queries.
HBase: This is an implementation of Google's BigTable, a distributed database.

These tools all solve different issues that come up when doing big data experiments,
including data analytics.

There are also non-Hadoop-based implementations of MapReduce, as well as other projects
with similar goals. In addition, many cloud providers have MapReduce-based systems.

Applying MapReduce
In this application, we will look at predicting the gender of a writer based on their use of
different words. We will use a Naive Bayes method for this, trained in MapReduce. The
final model doesn't need MapReduce, although we can use the Map step to do so—that is,
run the prediction model on each document in a list. This is a common Map operation for
data mining in MapReduce, with the reduce step simply organizing the list of predictions so
they can be tracked back to the original document.

We will be using Amazon's infrastructure to run our application, allowing us to leverage
their computing resources.

Getting the data
The data we are going to use is a set of blog posts that are labeled for age, gender, industry
(that is, work) and, funnily enough, star sign. This data was collected from

in August 2004 and has over 140 million words in more than 600,000 posts. Each blog is
probably written by just one person, with some work put into verifying this (although, we
can never be really sure). Posts are also matched with the date of posting, making this a
very rich dataset.

To get the data, go to and click on
Download Corpus. From there, unzip the file to a directory on your computer.

Working with Big Data

[294]

The dataset is organized with a single blog to a file, with the filename giving the classes. For
instance, one of the filenames is as follows:

1005545.male.25.Engineering.Sagittarius.xml

The filename is separated by periods, and the fields are as follows:

Blogger ID: This a simple ID value to organize the identities.
Gender: This is either male or female, and all the blogs are identified as one of
these two options (no other options are included in this dataset).
Age: The exact ages are given, but some gaps are deliberately present. Ages
present are in the (inclusive) ranges of 13-17, 23-27, and 33-48. The reason for the
gaps is to allow for splitting the blogs into age ranges with gaps, as it would be
quite difficult to separate an 18-year old's writing from a 19-year-old, and it is
possible that the age itself is a little outdated itself and would need to be updated
to 19 anyway.
Industry: In one of 40 different industries including science, engineering, arts,
and real estate. Also, included is indUnk, for an unknown industry.
Star Sign: This is one of the 12 astrological star signs.

All values are self-reported, meaning there may be errors or inconsistencies with labeling,
but are assumed to be mostly reliable—people had the option of not setting values if they
wanted to preserve their privacy in those ways.

A single file is in a pseudo-XML format, containing a tag and then a sequence of
 tags. Each of the tag is proceeded by a tag as well. While we can

parse this as XML, it is much simpler to parse it on a line-by-line basis as the files are not
exactly well-formed XML, with some errors (mostly encoding problems). To read the posts
in the file, we can use a loop to iterate over the lines.

We set a test filename so we can see this in action:

First, we create a list that will let us store each of the posts:

Working with Big Data

[295]

Then, we open the file to read:

If we aren't in a current post, we simply ignore the line.

We can then grab the text of each post:

We can also find out how many posts this author created:

Naive Bayes prediction
We are now going to implement the Naive Bayes algorithm using mrjob, allowing it to
process our dataset. Technically our version will be a reduced version of most Naive Bayes'
implementations, without many of the features that you would expect like smoothing small
values.

The mrjob package
The mrjob package allows us to create MapReduce jobs that can easily be computed on
Amazon's infrastructure. While mrjob sounds like a sedulous addition to the Mr. Men series
of children's books, it stands for Map Reduce Job.

Working with Big Data

[296]

You can install mrjob using the following:
I had to install the filechunkio package separately using

, but this will depend on your system
setup. There are other Anaconda channels for installing mrjob, check them
with:

In essence, mrjob provides the standard functionality that most MapReduce jobs need. Its
most amazing feature is that you can write the same code, test on your local machine
(without heavy infrastructure like Hadoop), and then push to Amazon's EMR service or
another Hadoop server.

This makes testing the code significantly easier, although it can't magically make a big
problem small— any local testing uses a subset of the dataset, rather than the whole, big
dataset. Instead, mrjob gives you a framework that you can test with a small problem and
have more confidence that the solution will scale to a larger problem, distributed on
different systems.

Extracting the blog posts
We are first going to create a MapReduce program that will extract each of the posts from
each blog file and store them as separate entries. As we are interested in the gender of the
author of the posts, we will extract that too and store it with the post.

We can't do this in a Jupyter Notebook, so instead open a Python IDE for
development. If you don't have a Python IDE you can use a text editor. I
recommend PyCharm, although it has a larger learning curve and it is
probably a bit heavy for just this chapter's code.

At the very least, I recommend using an IDE that has syntax highlighting and basic
completion of variable names (that last one helps find typos in your code easily.

If you still can't find an IDE you like, you can write the code in an IPython
Notebook and then click on File| Download As| Python. Save this file to
a directory and run it as we outlined in , Classifying Objects in
Images using Deep Learning.

Working with Big Data

[297]

To do this, we will need the and libraries as we will be obtaining environment
variables and we will also use a regular expression for word separation:

We then import the MRJob class, which we will inherit from our MapReduce job:

We then create a new class that subclasses MRJob. We will use a similar loop, as before, to
extract blog posts from the file. The mapping function we will define next will work off
each line, meaning we have to track different posts outside of the mapping function. For
this reason, we make and post class variables, rather than variables inside the
function. We then define our mapper function—this takes a line from a file as input and
yields blog posts. The lines are guaranteed to be ordered from the same per-job file. This
allows us to use the above class variables to record current post data:

Rather than storing the posts in a list, as we did earlier, we yield them. This allows mrjob to
track the output. We yield both the gender and the post so that we can keep a record of
which gender each record matches. The rest of this function is defined in the same way as
our loop above.

Finally, outside the function and class, we set the script to run this MapReduce job when it
is called from the command line:

if __name__ == '__main__':
 ExtractPosts.run()

Working with Big Data

[298]

Now, we can run this MapReduce job using the following shell command.

$ python extract_posts.py <your_data_folder>/blogs/51*
 --output-dir=<your_data_folder>/blogposts --no-output

Just a reminder that you don't need to enter the $ on the above line - this
just indicates this is a command run from the command line, and not in a
Jupyter Notebook.

The first parameter, (just remember to change
 to the full path to your data folder), obtains a sample of the data (all

files starting with 51, which is only 11 documents). We then set the output directory to a
new folder, which we put in the data folder, and specify not to output the streamed data.
Without the last option, the output data is shown to the command line when we run
it—which isn't very helpful to us and slows down the computer quite a lot.

Run the script, and quite quickly each of the blog posts will be extracted and stored in our
output folder. This script only ran on a single thread on the local computer so we didn't get
a speedup at all, but we know the code runs.

We can now look in the output folder for the results. A bunch of files are created and each
file contains each blog post on a separate line, preceded by the gender of the author of the
blog.

Training Naive Bayes
Now that we have extracted the blog posts, we can train our Naive Bayes model on them.
The intuition is that we record the probability of a word being written by a particular
gender, and record these values in our model. To classify a new sample, we would multiply
the probabilities and find the most likely gender.

The aim of this code is to output a file that lists each word in the corpus, along with the
frequencies of that word for each gender. The output file will look something like this:

Working with Big Data

[299]

The first value is the word and the second is a dictionary mapping the genders to the
frequency of that word in that gender's writings.

Open a new file in your Python IDE or text editor. We will again need the and
libraries, as well as and from . We also need , as we will be
sorting a dictionary:

We will also need , which outlines a step in a MapReduce job. Our previous job only
had a single step, which is defined as a mapping function and then as a reducing function.
This job will have multiple steps where we Map, Reduce, and then Map and Reduce again.
The intuition is the same as the pipelines we used in earlier chapters, where the output of
one step is the input to the next step:

We then create our word search regular expression and compile it, allowing us to find word
boundaries. This type of regular expression is much more powerful than the simple split we
used in some previous chapters, but if you are looking for a more accurate word splitter, I
recommend using NLTK or Spacey as we did in , Social Media Insight using Naive
Bayes:

We define a new class for our training. I'll first provide the whole class as one code block,
and then we will come back to each section to review what it does:

Working with Big Data

[300]

Let's have a look at the sections of this code, one step at a time:

Working with Big Data

[301]

We define the steps of our MapReduce job. There are two steps:

The first step will extract the word occurrence probabilities. The second step will compare
the two genders and output the probabilities for each to our output file. In each MRStep, we
define the mapper and reducer functions, which are class functions in this
NaiveBayesTrainer class (we will write those functions next):

The first function is the mapper function for the first step. The goal of this function is to take
each blog post, get all the words in that post, and then note the occurrence. We want the
frequencies of the words, so we will return , which allows us to later
sum the values for frequencies. The computation here isn't exactly correct—we need to also
normalize for the number of documents. In this dataset, however, the class sizes are the
same, so we can conveniently ignore this with little impact on our final version.

We also output the gender of the post's author, as we will need that later:

We used in the preceding code to simplify the parsing of the blog
posts from the file, for this example. This is not recommended. Instead,
use a format such as JSON to properly store and parse the data from the
files. A malicious user with access to the dataset can insert code into these
tokens and have that code run on your server.

In the reducer for the first step, we sum the frequencies for each gender and word pair. We
also change the key to be the word, rather than the combination, as this allows us to search
by word when we use the final trained model (although, we still need to output the gender
for later use);

Working with Big Data

[302]

The final step doesn't need a mapper function, which is why we didn't add one. The data
will pass straight through as a type of identity mapper. The reducer, however, will combine
frequencies for each gender under the given word and then output the word and frequency
dictionary.

This gives us the information we needed for our Naive Bayes implementation:

Finally, we set the code to run this model when the file is run as a script. We will need to
add this code to the file:

We can then run this script. The input to this script is the output of the previous post-
extractor script (we can actually have them as different steps in the same MapReduce job if
you are so inclined);

The output directory is a folder that will store a file containing the output from this
MapReduce job, which will be the probabilities we need to run our Naive Bayes classifier.

Putting it all together
We can now actually run the Naive Bayes classifier using these probabilities. We will do
this in a Jupyter Notebook, although this processing itself can be transferred to a mrjob
package to be performed at scale.

Working with Big Data

[303]

First, take a look at the folder that was specified in the last MapReduce job. If the
output was more than one file, we can merge the files by just appending them to each other
using a command line function from within the directory:

If you do this, you'll need to update the following code with as the model
filename.

Back to our Notebook, we first import some standard imports we need for our script:

We again redefine our word search regular expression—if you were doing this in a real
application, I recommend centralizing the functionality. It is important that words are
extracted in the same way for both training and testing:

The line is split into two sections, separated by whitespace. The first is the word itself and
the second is a dictionary of probabilities. For each, we run on them to get the actual
value, which was stored using in the previous code.

Next, we load our actual model. You may need to change the model filename—it will be in
the output dir of the last MapReduce job;

Working with Big Data

[304]

As an example, we can see the difference in usage of the word i (all words are turned into
lowercase in the MapReduce jobs) between males and females:

Next, we create a function that can use this model for prediction. We won't use the scikit-
learn interface for this example, and just create a function instead. Our function takes the
model and a document as the parameters and returns the most likely gender:

It is important to note that we used to compute the probabilities. Probabilities in
Naive Bayes models are often quite small. Multiplying small values, which is necessary for
many statistical values, can lead to an underflow error where the computer's precision isn't
good enough and just makes the whole value 0. In this case, it would cause the likelihoods
for both genders to be zero, leading to incorrect predictions.

To get around this, we use log probabilities. For two values a and b, log(a× b) is equal to
log(a) + log(b). The log of a small probability is a negative value, but a relatively large one.
For instance, log(0.00001) is about -11.5. This means that rather than multiplying actual
probabilities and risking an underflow error, we can sum the log probabilities and compare
the values in the same way (higher numbers still indicate a higher likelihood).

If you want to obtain probabilities back from the log probabilities, make
sure to undo the log operation by using e to the power of the value you are
interested in. To revert -11.5 into the probability, take e-11.5, which equals
0.00001 (approximately).

One problem with using log probabilities is that they don't handle zero values well
(although, neither does multiplying by zero probabilities). This is due to the fact that log(0)
is undefined. In some implementations of Naive Bayes, a 1 is added to all counts to get rid
of this, but there are other ways to address this. This is a simple form of smoothing of the
values. In our code, we just return a very small value if the word hasn't been seen for our
given gender.

Working with Big Data

[305]

Adding one to all counts above is a form of smoothing. Another option is
to initialise to a very small value, such as 10-16 - as long as its not exactly 0!

Back to our prediction function, we can test this by copying a post from our dataset:

We then predict with the following code:

The resulting prediction, male, is correct for this example. Of course, we never test a model
on a single sample. We used the file starting with 51 for training this model. It wasn't many
samples, so we can't expect too high of an accuracy.

The first thing we should do is train on more samples. We will test on any file that starts
with a 6 or 7 and train on the rest of the files.

In the command line and in your data folder (), where the blogs
folder exists, create a copy of the blogs folder into a new folder.

Make a folder for our training set:

Move any file starting with a 6 or 7 into the test set, from the train set:

Working with Big Data

[306]

Then, make a folder for our test set:

Move any file starting with a 6 or 7 into the test set, from the train set:

We will rerun the blog extraction on all files in the training set. However, this is a large
computation that is better suited to cloud infrastructure than our system. For this reason,
we will now move the parsing job to Amazon's infrastructure.

Run the following on the command line, as you did before. The only difference is that we
train on a different folder of input files. Before you run the following code, delete all files in
the blog posts and models folders:

Next up comes the training of our Naive Bayes model. The code here will take quite a bit
longer to run. Many, many hours. You may want to skip running this locally, unless you
have a really powerful system! If you do want to skip, head to the next section.

We will test on any blog file in our test set. To get the files, we need to extract them. We will
use the MapReduce job, but store the files in a separate folder:

Back in the Jupyter Notebook, we list all the outputted testing files:

Working with Big Data

[307]

For each of these files, we extract the gender and document and then call the predict
function. We do this in a generator, as there are a lot of documents, and we don't want to
use too much memory. The generator yields the actual gender and the predicted gender:

We then record the predictions and actual genders across our entire dataset. Our
predictions here are either male or female. In order to use the function from
scikit-learn, we need to turn these into ones and zeroes. In order to do that, we record a 0 if
the gender is male and 1 if it is female. To do this, we use a Boolean test, seeing if the gender
is female. We then convert these Boolean values to using NumPy:

Now, we test the quality of this result using the F1 score in scikit-learn:

The result of 0.78 is quite reasonable. We can probably improve this by using more data, but
to do that, we need to move to a more powerful infrastructure that can handle it.

Training on Amazon's EMR infrastructure
We are going to use Amazon's Elastic Map Reduce (EMR) infrastructure to run our parsing
and model building jobs.

Working with Big Data

[308]

In order to do that, we first need to create a bucket in Amazon's storage cloud. To do this,
open the Amazon S3 console in your web browser by going to

 and click on Create Bucket. Remember the name of the bucket, as we will need it
later.

Right-click on the new bucket and select Properties. Then, change the permissions, granting
everyone full access. This is not a good security practice in general, and I recommend that
you change the access permissions after you complete this chapter. You can use advanced
permissions in Amazon's services to give your script access and also protect against third
parties viewing your data.

Left-click the bucket to open it and click on Create Folder. Name the folder blogs_train. We
are going to upload our training data to this folder for processing on the cloud.

On your computer, we are going to use Amazon's AWS CLI, a command-line interface for
processing on Amazon's cloud.

To install it, use the following:

Follow the instructions at
to set the credentials for this program.

We now want to upload our data to our new bucket. First, we want to create our dataset,
which is all the blogs not starting with a 6 or 7. There are more graceful ways to do this
copy, but none are cross-platform enough to recommend. Instead, simply copy all the files
and then delete the ones that start with a 6 or 7, from the training dataset:

Next, upload the data to your Amazon S3 bucket. Note that this will take some time and use
quite a lot of upload data (several hundred megabytes). For those with slower internet
connections, it may be worth doing this at a location with a faster connection;

We are going to connect to Amazon's EMR (Elastic Map Reduce) using mrjob—it handles
the whole thing for us; it only needs our credentials to do so. Follow the instructions at

to setup mrjob with your
Amazon credentials.

Working with Big Data

[309]

After this is done, we alter our mrjob run, only slightly, to run on Amazon EMR. We just tell
mrjob to use emr using the -r switch and then set our s3 containers as the input and output
directories. Even though this will be run on Amazon's infrastructure, it will still take quite a
long time to run, as the default settings for mrjob use a single, low powered computer.

You will be charged for the usage of both S3 and EMR. This will only be a
few dollars, but keep this in mind if you are going to keep running the
jobs or doing other jobs on bigger datasets. I ran a very large number of
jobs and was charged about $20 all up. Running just these few should be
less than $4. However, you can check your balance and set up pricing
alerts, by going to

It isn't necessary for the blogposts_train and model folders to exist—they will be created by
EMR. In fact, if they exist, you will get an error. If you are rerunning this, just change the
names of these folders to something new, but remember to change both commands to the
same names (that is, the output directory of the first command is the input directory of the
second command).

If you are getting impatient, you can always stop the first job after a while
and just use the training data gathered so far. I recommend leaving the job
for an absolute minimum of 15 minutes and probably at least an hour. You
can't stop the second job and get good results though; the second job will
probably take about two to three times as long as the first job did.

If you have the ability to purchase more advanced hardware, mrjob supports the creation of
clusters on Amazon's infrastructure and also the ability to use more powerful computing
hardware. You can run a job on a cluster of machines by specifying the type and number at
the command line. For instance, to use 16 c1.medium computers to extract the text, run the
following command:

Working with Big Data

[310]

In addition, you can create clusters separately and reattach jobs to those
clusters. See mrjob's documentation at

for more information on this process. Keep
in mind that more advanced options become an interaction between
advanced features of mrjob and advanced features of Amazon's AWS
infrastrucutre, meaning you will need to investigate both technologies to
get high-powered processing. Keep in mind that if you run more instances
of more powerful hardware, you will be charged more in turn.

You can now go back to the s3 console and download the output model from your bucket.
Saving it locally, we can go back to our Jupyter Notebook and use the new model. We
reenter the code here—only the differences are highlighted, just to update to our new
model:

The result is better with the extra data, at 0.81.

If everything went as planned, you may want to remove the bucket from
Amazon S3—you will be charged for the storage.

Working with Big Data

[311]

Summary
In this chapter, we looked at running jobs on big data. By most standards, our dataset is
actually quite small—only a few hundred megabytes. Many industrial datasets are much
bigger, so extra processing power is needed to perform the computation. In addition, the
algorithms we used can be optimized for different tasks to further increase the scalability.

Our approach extracted word frequencies from blog posts, in order to predict the gender of
the author of a document. We extracted the blogs and word frequencies using MapReduce-
based projects in mrjob. With those extracted, we can then perform a Naive Bayes-esque
computation to predict the gender of a new document.

We only scratched the surface of what you can do with MapReduce, and we did not even
use it to its full potential for this application. To take the lessons further, convert the
prediction function to a MapReduce job. That is, you train the model on MapReduce to
obtain a model, and you run the model with MapReduce to get a list of predictions. Extend
this by also doing your evaluation in MapReduce, with the final result coming back as
simply the F1-score!

We can use the mrjob library to test locally and then automatically set up and use Amazon's
EMR cloud infrastructure. You can use other cloud infrastructure or even a custom built
Amazon EMR cluster to run these MapReduce jobs, but there is a bit more tinkering needed
to get them running.

Next Steps...
During the course, there were lots of avenues not taken, options not presented, and subjects
not fully explored. In this appendix, I've created a collection of next steps for those wishing
to undertake extra learning and progress their data mining with Python.

This appendix is for learning more about data mining. Also included are some challenges to
extend the work performed. Some of these will be small improvements; some will be quite a
bit more work—I've made a note of those more tasks that are noticeably more difficult and
involved than the others.

Getting Started with Data Mining
In this chapter following are a few avenues that reader can explore:

Scikit-learn tutorials
URL:

Included in the scikit-learn documentation is a series of tutorials on data mining. The
tutorials range from basic introductions to toy datasets, all the way through to
comprehensive tutorials on techniques used in recent research. The tutorials here will take
quite a while to get through—they are very comprehensive—but are well worth the effort to
learn.

There are also a large number of algorithms that have been implemented for compatability
with scikit-learn. These algorithms are not always included in scikit-learn itself for a
number of reasons, but a list of many of these is maintained at

.

Next Steps...

[313]

Extending the Jupyter Notebook
URL:

The Jupyter Notebook is a powerful tool. It can be extended in many ways, and one of those
is to create a server to run your Notebooks, separately from your main computer. This is
very useful if you use a low-power main computer, such as a small laptop, but have more
powerful computers at your disposal. In addition, you can set up nodes to perform
parallelized computations.

More datasets
URL:

There are many datasets available on the Internet from a number of different sources. These
include academic, commercial, and government datasets. A collection of well-labelled
datasets is available at the UCI ML library, which is one of the best options to find datasets
for testing your algorithms. Try out the OneR algorithm with some of these different
datasets.

Other Evaluation Metrics
There is a wide range of evaluation metrics for other takes. Some notable ones to investigate
are:

The Lift Metric:
Segment evaluation metrics:
Pearson's Correlation Coefficient:

Area under the ROC Curve:
Normalized Mutual Information:

Each of these metrics was developed with a particular application in mind. For example, the
segment evaluation metrics evaluate how accurate breaking a document of text into chunks
is, allowing for some variation between chunk boundaries. A good understanding of where
evaluation metrics can be applied and where they can not is critical to ongoing success in
data mining.

Next Steps...

[314]

More application ideas
URL:

If you are looking for more ideas on data mining applications, specifically those for
businesses, check out my company's blog. I post regularly about applications of data
mining, focusing on practical outcomes for businesses.

Classifying with scikit-learn Estimators
A naïve implementation of the nearest neighbor algorithm is quite slow—it checks all pairs
of points to find those that are close together. Better implementations exist, with some
implemented in scikit-learn.

Scalability with the nearest neighbor
URL:

 For instance, a kd-tree can be created that speeds up the algorithm (and this is already
included in scikit-learn).

Another way to speed up this search is to use locality-sensitive hashing, Locality-Sensitive
Hashing (LSH). This is a proposed improvement for scikit-learn, and hasn't made it into the
package at the time of writing. The preceding link gives a development branch of scikit-
learn that will allow you to test out LSH on a dataset. Read through the documentation
attached to this branch for details on doing this.

To install it, clone the repository and follow the instructions to install the Bleeding Edge
code available at on your computer.
Remember to use the repository's code rather than the official source. I recommend that
you use Anaconda for playing around with bleeding-edge packages so that they don't
interfere with other libraries on your system.

More complex pipelines
URL:

The Pipelines we have used here follow a single stream—the output of one step is the input
of another step.

Next Steps...

[315]

Pipelines follow the transformer and estimator interfaces as well—this allows us to embed
Pipelines within Pipelines. This is a useful construct for very complex models, but becomes
very powerful when combined with Feature Unions, as shown in the preceding link.This
allows us to extract multiple types of features at a time and then combine them to form a
single dataset. For more details, see this example:

.

Comparing classifiers
There are lots of classifiers in scikit-learn that are ready to use. The one you choose for a
particular task is going to be based on a variety of factors. You can compare the f1-score to
see which method is better, and you can investigate the deviation of those scores to see if
that result is statistically significant.

An important factor is that they are trained and tested on the same data—that is, the test set
for one classifier is the test set for all classifiers. Our use of random states allows us to
ensure that this is the case—an important factor for replicating experiments.

Automated Learning
URL:

URL:

It's almost cheating, but these packages will investigate a wide range of possible models for
your data mining experiments for you. This removes the need to create a workflow testing a
large number of parameters for a larger number of classifier types, and lets you focus on
other things, such as feature extract--still critically important and not yet automated!

The general idea is that you extract your features and pass the resulting matrix onto one of
these automated classification algorithms (or regression algorithms). It does the search for
you and even exports the best model for you. In the case of TPOT, it even gives you Python
code to create the model from scratch without having to install TPOT on your server.

Next Steps...

[316]

Predicting Sports Winners with Decision
Trees
URL:

The pandas library is a great package—anything you normally write to do data loading is
probably already implemented in pandas. You can learn more about it from their tutorial.

There is also a great blog post written by Chris Moffitt that overviews common tasks people
do in Excel and how to do them in pandas:

You can also handle large datasets with pandas; see the answer, from user Jeff, to this
StackOverflow question for an extensive overview of the process:

.

Another great tutorial on pandas is written by Brian Connelly:
.

More complex features
URL:

Larger exercise!

Sports teams change regularly from game to game. An easy win for a team can turn into a
difficult game if a couple of the best players are suddenly injured. You can get the team
rosters from basketball-reference as well. For example, the roster for the 2013-2014 season
for the Orlando Magic is available at the preceding link. Similar data is available for all
NBA teams.

Writing code to integrate how much a team changes and using that to add new features can
improve the model significantly. This task will take quite a bit of work though!

Next Steps...

[317]

Dask
URL:

If you want to take the features of pandas and increase its scalability, then Dask is for you.
Dask provides parallelized versions of NumPy arrays, Pandas DataFrames, and task
scheduling. Often, the interface is nearly the same as the original NumPy or Pandas
versions.

Research
URL:

Larger exercise!As you might imagine, there has been a lot of work performed on predicting
NBA games, as well as for all sports. Search "<SPORT> prediction" in Google Scholar to find
research on predicting your favorite <SPORT>.

Recommending Movies Using Affinity
Analysis
There are many recommendation-based datasets that are worth investigating, each with its
own issues.

New datasets
URL:

Larger exercise!

There are many recommendation-based datasets that are worth investigating, each with its
own issues. For example, the Book-Crossing dataset contains more than 278,000 users and
over a million ratings. Some of these ratings are explicit (the user did give a rating), while
others are more implicit. The weighting to these implicit ratings probably shouldn't be as
high as for explicit ratings. The music website www.last.fm has released a great dataset for
music recommendation:

There is also a joke recommendation dataset! See here:

Next Steps...

[318]

The Eclat algorithm
URL:

The APriori algorithm implemented here is easily the most famous of the association rule
mining graphs, but isn't necessarily the best. Eclat is a more modern algorithm that can be
implemented relatively easily.

Collaborative Filtering
URL:

For those wanting to got much further with recommendation engines, it is necessary to
investigate other formats for recommendations, such as collaborative filtering. This library
provides some background into the algorithms and implementations, along with some
tutorials. There is also a good overview at

.

Extracting Features with Transformers
Following topics, according to me, are also relevant when it comes to deeper understanding
of Extracting Features with Transformers

Adding noise
We covered removing noise to improve features; however, improved performance can be
obtained for some datasets by adding noise. The reason for this is simple—it helps stop
overfitting by forcing the classifier to generalize its rules a little (although too much noise
will make the model too general). Try implementing a Transformer that can add a given
amount of noise to a dataset. Test that out on some of the datasets from UCI ML and see if it
improves test-set performance.

Next Steps...

[319]

Vowpal Wabbit
URL:

Vowpal Wabbit is a great project, providing very fast feature extraction for text-based
problems. It comes with a Python wrapper, allowing you to call it from with Python code.
Test it out on large datasets.

word2vec
URL:

Word embeddings are receiving a lot of interest from research and industry, for a good
reason: they perform very well on many text mining tasks. They are a big more complicated
than the bag-of-words model and create larger models. Word embeddings are great features
when you have lots of data and can even help in some cases with smaller amounts.

Social Media Insight Using Naive Bayes
Do consider the following points after finishing with Social Media Insight Using Native
Bayes.

Spam detection
URL:

Using the concepts here, you can create a spam detection method that is able to view a
social media post and determine whether it is spam or not. Try this out by first creating a
dataset of spam/not-spam posts, implementing the text mining algorithms, and then
evaluating them.

One important consideration with spam detection is the false-positive/false-negative ratio.
Many people would prefer to have a couple of spam messages slip through, rather than
miss out on a legitimate message because the filter was too aggressive in stopping the spam.
In order to turn your method for this, you can use a Grid Search with the f1-score as the
evaluation criteria. See the preceding link for information on how to do this.

Next Steps...

[320]

Natural language processing and part-of-speech
tagging
URL:

The techniques we used here are quite lightweight compared to some of the linguistic
models employed in other areas. For example, part-of-speech tagging can help
disambiguate word forms, allowing for higher accuracy. It comes with NLTK.

Discovering Accounts to Follow Using
Graph Mining
Do give the following a read when done with the chapter.

More complex algorithms
URL: Larger exercise!

There has been extensive research on predicting links in graphs, including for social
networks. For instance, David Liben-Nowell and Jon Kleinberg published a paper on this
topic that would serve as a great place for more complex algorithms, linked previously.

NetworkX
URL:

If you are going to be using graphs and networks more, going in-depth into the NetworkX
package is well worth your time—the visualization options are great and the algorithms are
well implemented. Another library called SNAP is also available with Python bindings, at

.

Next Steps...

[321]

Beating CAPTCHAs with Neural Networks
You may find the following topics interesting as well:

Better (worse?) CAPTCHAs
URL:

Larger exercise!

The CAPTCHAs we beat in this example were not as complex as those normally used
today. You can create more complex variants using a number of techniques as follows:

Applying different transformations such as the ones in scikit-image (see the
preceding link)
Using different colors and colors that don't translate well to grayscale
Adding lines or other shapes to the image:

Deeper networks
These techniques will probably fool our current implementation, so improvements will
need to be made to make the method better. Try some of the deeper networks we used.
Larger networks need more data, though, so you will probably need to generate more than
the few thousand samples we did here in order to get good performance. Generating these
datasets is a good candidate for parallelization—lots of small tasks that can be performed
independently.

A good idea for increasing your dataset size, which applies to other datasets as well, is to
create variants of existing images. Flip images upside down, crop them weirdly, add noise,
blur the image, make some random pixels black and so on.

Next Steps...

[322]

Reinforcement learning
URL:

Reinforcement learning is gaining traction as the next big thing in data mining—although it
has been around a long time! PyBrain has some reinforcement learning algorithms that are
worth checking out with this dataset (and others!).

Authorship Attribution
When it comes to Authorship Attribution do give the following topics a read.

Increasing the sample size
The Enron application we used ended up using just a portion of the overall dataset. There is
lots more data available in this dataset. Increasing the number of authors will likely lead to
a drop in accuracy, but it is possible to boost the accuracy further than was achieved here,
using similar methods. Using a Grid Search, try different values for n-grams and different
parameters for support vector machines, in order to get better performance on a larger
number of authors.

Blogs dataset
The dataset used, provides authorship-based classes (each blogger ID is a separate author).
This dataset can be tested using this kind of method as well. In addition, there are the other
classes of gender, age, industry, and star sign that can be tested—are authorship-based
methods good for these classification tasks?

Local n-grams
URL:

Another form of classifier is local n-gram, which involves choosing the best features per-
author, not globally for the entire dataset. I wrote a tutorial on using local n-grams for
authorship attribution, available at the preceding link.

Next Steps...

[323]

Clustering News Articles
It won't hurt to read a little on the following topics

Clustering Evaluation
The evaluation of clustering algorithms is a difficult problem—on the one hand, we can sort
of tell what good clusters look like; on the other hand, if we really know that, we should
label some instances and use a supervised classifier! Much has been written on this topic.
One slideshow on the topic that is a good introduction to the challenges follows:

.

In addition, a very comprehensive (although now a little dated) paper on this topic is here:

The scikit-learn package does implement a number of the metrics described in those links,
with an overview here:

.

Using some of these, you can start evaluating which parameters need to be used for better
clusterings. Using a Grid Search, we can find parameters that maximize a metric—just like
in classification.

Temporal analysis
Larger exercise!

The code we developed here can be rerun over many months. By adding some tags to each
cluster, you can track which topics stay active over time, getting a longitudinal viewpoint of
what is being discussed in the world news. To compare the clusters, consider a metric such
as the adjusted mutual information score, which was linked to the scikit-learn
documentation earlier. See how the clusters change after one month, two months, six
months, and a year.

Next Steps...

[324]

Real-time clusterings
The k-means algorithm can be iteratively trained and updated over time, rather than
discrete analyses at given time frames. Cluster movement can be tracked in a number of
ways—for instance, you can track which words are popular in each cluster and how much
the centroids move per day. Keep the API limits in mind—you probably only need to do
one check every few hours to keep your algorithm up-to-date.

Classifying Objects in Images Using Deep
Learning
The following topics are also important when deeper study into Classifying objects is
considered.

Mahotas
URL:

Another package for image processing is Mahotas, including better and more complex
image processing techniques that can help achieve better accuracy, although they may come
at a high computational cost. However, many image processing tasks are good candidates
for parallelization. More techniques on image classification can be found in the research
literature, with this survey paper as a good start:

.

Other image datasets are available at
.

There are many datasets of images available from a number of academic and industry-
based sources. The linked website lists a bunch of datasets and some of the best algorithms
to use on them. Implementing some of the better algorithms will require significant
amounts of custom code, but the payoff can be well worth the pain.

Next Steps...

[325]

Magenta
URL:

This repository contains a few high-quality deep learning papers that are worth reading,
along with in-depth reviews of the paper and their techniques. If you want to go deep into
deep learning, check out these papers first before expanding outwards.

Working with Big Data
The following resources on Big Data would be helpful

Courses on Hadoop
Both Yahoo and Google have great tutorials on Hadoop, which go from beginner to quite
advanced levels. They don't specifically address using Python, but learning the Hadoop
concepts and then applying them in Pydoop or a similar library can yield great results.

Yahoo's tutorial:

Google's tutorial:

Pydoop
URL:

Pydoop is a python library to run Hadoop jobs. Pydoop also works with HDFS, the Hadoop
File System, although you can get that functionality in mrjob as well. Pydoop will give you
a bit more control over running some jobs.

Recommendation engine
Building a large recommendation engine is a good test of your Big data skills. A great blog
post by Mark Litwintschik covers an engine using Apache Spark, a big data technology:

Next Steps...

[326]

W.I.L.L
URL:

Very large project!

This open source personal assistant can be your next JARVIS from Iron Man. You can add
to this project using data mining techniques to allow it to learn to do some tasks that you
need to do regularly. This is not easy, but the potential productivity gains are worth it.

More resources
The following would serve as a really good resource for additional information:

Kaggle competitions
URL:

Kaggle runs data mining competitions regularly, often with monetary prizes.
Testing your skills on Kaggle competitions is a fast and great way to learn to work with
real-world data mining problems. The forums are nice and share environments—often, you
will see code released for a top-10 entry during the competition!

Coursera
URL:

Coursera contains many courses on data mining and data science. Many of the courses are
specialized, such as big data and image processing. A great general one to start with is
Andrew Ng's famous course: .
It is a bit more advanced than this and would be a great next step for interested readers.
For neural networks, check out this course:

.
If you complete all of these, try out the course on probabilistic graphical models at

.

Index

A
activation function
Adult dataset
 URL
Advertisements dataset
 URL
affinity analysis
 about ,
 algorithms
 application
 example
 methodology
Amazon's EMR infrastructure
 training on , , ,
Anaconda
 URL
API Endpoints
application, object detection in images
 data, obtaining
 implementing
 neural network, creating ,
 opening
Apriori algorithm
 about
 association rules, evaluating
 association rules, extracting
 basics
 implementing
 implementing, for movie recommendation
artificial intelligence
artificial neural networks ,
authorization methods
authorship analysis
 about
 sub-problems
 use cases

authorship attribution
 about ,
 data, obtaining , , ,
 documents, attributing to authors
 evaluation ,
 implementing
 performing
 restrictions
 training set
autoencoders
automated learning
 about
 reference link

B
back propagation
back propagation (backprop) algorithm
bag-of-words model
bagging
Bayes' theorem
bias
big data
 about
 applications , ,
 resources
 variety
 velocity
 veracity
 volume
blog posts
 extracting ,
blogs dataset

C
CAPTCHAs
 references
categorical-based datasets

[328]

character n-grams
 about ,
 extracting ,
Classification and Regression Trees (CART)

algorithm
classification
 about
 algorithm, testing
 dataset, loading
 dataset, preparing
 example
 OneR algorithm, implementing
classifiers
 comparing
clustering
 about
 evaluation
 references
co-association matrix
collaborative filtering
 about
 reference link
Comma-Separated Values (CSV) format
conclusion
confidence rule
connected components
Convolutional Neural Networks (CNN) , ,

Cosine distance
Counter class
 using
cross-fold validation framework
custom transformer
 creating

D
Dask
 about
 URL
data mining ,
 application ideas, URL
datasets
 basic CAPTCHAs, drawing , ,
 classifying, with existing model , , ,

 creating
 features
 image, splitting into individual letters ,
 loading ,
 samples
 training dataset, creating ,
 URL
decision trees
 about ,
 Gini impurity
 information gain
 parameters
 predicting stage
 training stage
 using
deep learning
deep neural networks
 about
 implementing ,
 intuition ,
deeper networks
dense layers
discretization
distance metrics
domain knowledge (expert knowledge)
dropout layers

E
Eclat algorithm
 about ,
 URL
Enron dataset
 about
 accessing
 dataset loader, creating , ,
ensembling
 clustering
 evidence accumulation , , ,
 implementing
 working , ,
Estimator interface
 using
estimators
 about
 fit() function

[329]

 predict() function
Euclidean distance
evaluation metrics
 references
Evidence Accumulation Clustering (EAC) algorithm

F
F1-score
 using
feature creation ,
feature engineering
feature extraction
 about
 feature patterns
 good features, creating
 reality, representing in models
feature selection
 about
 best individual features, selecting
 complexity, reducing
 noise, reducing
 readable models, creating
feature-based normalization
feed-forward neural network
follower information, obtaining from Twitter
 about
 network, building , ,
forward propagation
FP-growth algorithm
frequent itemsets
frequentist approach
function words
 classifying with
 counting ,
 using ,

G
GPU optimization
 about
 code, running on GPU ,
 environment, setting up ,
GPUs
 using, for computation
graph mining

graph
 about ,
 creating ,
 directed graph
 similarity graph, creating ,

H
Hadoop Distributed File System (HDFS)
Hadoop MapReduce
HBase
Hive

I
image prediction
 application scenario , ,
inter-cluster distance
Internet of Things (IoT) ,
intra-cluster distance
Ionosphere dataset
 about
 URL
Iris dataset

J
Jaccard Similarity
Joblib library
JSON format
Jupyter
Jupyter Notebook
 about
 installing
 URL
 using

K
k-means algorithm
 about , , ,
 assignment phase
 clustering algorithms, using as transformers
 results, evaluating , ,
 topic information, extracting from clusters ,

 updating phase
Kaggle

[330]

 URL
kd-tree
 about
 URL
Keras
 Sequential model
 using , , , ,
kernels
 about
 Gaussian (rbf) and Sigmoidal functions
 linear kernel
 polynomial kernel

L
LabelEncoder transformer
Latent Semantic Indexing
layers, neural networks
 hidden layer
 input layer
 output layer
Levenshtein edit distance
local n-gram
 about
 reference link
Locality-Sensitive Hashing (LSH)
logistic function

M
Magenta
 URL
Mahotas
 about
 URL
Manhattan distance
Map Reduce Job
MapReduce
 about
 applying
 data, obtaining , ,
 Hadoop MapReduce
 intuition , ,
 stages
 word count example , ,
matplotlib
 URL

metadata
MiniBatchKMeans algorithm
Minimum Spanning Tree (MST)
model
movie dataset
 URL
movie recommendation
 Apriori algorithm, implementing
 dataset, loading with pandas
 dataset, obtaining
 problem, dealing with
 sparse data formats
mrjob package

N
n-gram features
Naive Bayes algorithm
Naive Bayes classifier
 running, with probabilities , , , ,

Naive Bayes prediction
 implementing
 mrjob package ,
Naive Bayes
 about
 applying
 Bayes' theorem
 dictionaries, converting to matrix
 evaluating, with F1-score
 features, extracting from models
 implementing
 training ,
 word counts, extracting
 working with
National Basketball Association (NBA)
 URL
natural language processing
 reference link
Nearest neighbors
NetworkX
 URL
neural networks
 about , ,
 classifying
 layers

[331]

 training
news articles
 grouping ,
Not a Number (NaN)
NumPy
 dataset, loading
 installing

O
object classification
 about
 use cases ,
OneHotEncoder transformer
OneR algorithm
 about ,
 implementing
online learning
 about ,
 implementing , ,
overfitting

P
pandas
 URL
 URL, for documentation
 used, for loading dataset
parameter search
part-of-speech tagging
phonemes
Pig
pipelines
 about ,
 URL
plant dataset
premise
preprocessing
 about
 feature-based normalization
 workflow, creating
Principal Component Analysis (PCA) ,
product recommendations
 about
 best rules, ranking
 dataset, loading with Numpy
 example code, downloading

 ranking of rules, implementing
pruning
Pydoop
 about
 URL
Python
 about
 installing
 references
 scikit-learn, installing
 URL
 using

R
random forests
 about
 applying
 ensembles, working with
 feature engineering
 parameters, setting
rate limiting
real-time clustering
Recurrent Neural Networks (RNN)
regularization
 reference link
reinforcement learning
 reference link
replicable dataset
 creating, from Twitter

S
scikit-learn estimators
 about
 algorithm, executing
 dataset, loading
 distance metrics
 Nearest neighbors
 parameters, setting
 standard workflow
scikit-learn
 about ,
 installing
 URL ,
Silhouette Coefficient
similarity graph

[332]

 creating ,
single-pass
SNAP
 URL
social network
 data, downloading
 dataset, classifying
 dataset, loading
 replicable dataset, creating from Twitter
spaCy
 about
 URL
spam detection
 about
 reference link
sparse data formats
sports outcome prediction
 data, collecting
 dataset, cleaning
 dataset, loading
 features, extracting
 implementing ,
 models, evaluating
 pandas, used for loading dataset
 references
stopping criterion
Stratified K-Fold
stylometry
 about
 writer invariants
sub-problems, authorship analysis
 authorship clustering
 authorship profiling
 authorship verification
subgraphs
 connected components , , ,
 criteria, optimizing ,
 finding
subreddits
supervised learning
support rule
Support Vector Machines (SVM)
 about , ,
 classifying with
 kernels

T
temporal analysis
TensorFlow
 about , ,
 URL
term disambiguation
term frequency-inverse document frequency (tf-idf)

text data
 disambiguation
text extraction, from arbitrary websites
 about
 content, extracting ,
 stories, finding , ,
text transformers
 about
 bag-of-words model
 n-gram features
 text features, extracting
TfidfVectorizer
threshold parameter
topic discovery
 data extraction, with web API , , ,

 data, obtaining , ,
 reddit, as data source ,
 trending
transformer API
transformer
 about ,
 custom transformer, creating
 fit() function
 implementing ,
 transform() function
transformers
 noise, adding
Twitter data
 URL
Twitter
 follower information, obtaining from ,
 replicable dataset, creating

U
unit testing

unstructured format
unsupervised learning

V
variance
Vowpal Wabbit
 about
 URL

W
weighted edges
word embeddings

word prediction, CAPTCHA
 about ,
 accuracy, improving with dictionary
 ranking mechanisms, for word similarity
 testing
word2vec
 URL
words
 predicting

Y
YARN

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started with Data Mining
	Introducing data mining
	Using Python and the Jupyter Notebook
	Installing Python
	Installing Jupyter Notebook
	Installing scikit-learn

	A simple affinity analysis example
	What is affinity analysis?

	Product recommendations
	Loading the dataset with NumPy
	Downloading the example code

	Implementing a simple ranking of rules
	Ranking to find the best rules

	A simple classification example
	What is classification?
	Loading and preparing the dataset
	Implementing the OneR algorithm
	Testing the algorithm

	Summary

	Chapter 2: Classifying with scikit-learn Estimators
	scikit-learn estimators
	Nearest neighbors
	Distance metrics
	Loading the dataset
	Moving towards a standard workflow
	Running the algorithm
	Setting parameters

	Preprocessing
	Standard pre-processing
	Putting it all together

	Pipelines
	Summary

	Chapter 3: Predicting Sports Winners with Decision Trees
	Loading the dataset
	Collecting the data
	Using pandas to load the dataset
	Cleaning up the dataset
	Extracting new features

	Decision trees
	Parameters in decision trees
	Using decision trees

	Sports outcome prediction
	Putting it all together

	Random forests
	How do ensembles work?
	Setting parameters in Random Forests
	Applying random forests
	Engineering new features

	Summary

	Chapter 4: Recommending Movies Using Affinity Analysis
	Affinity analysis
	Algorithms for affinity analysis
	Overall methodology

	Dealing with the movie recommendation problem
	Obtaining the dataset
	Loading with pandas
	Sparse data formats

	Understanding the Apriori algorithm and its implementation
	Looking into the basics of the Apriori algorithm
	Implementing the Apriori algorithm
	Extracting association rules
	Evaluating the association rules

	Summary

	Chapter 5: Features and scikit-learn Transformers
	Feature extraction
	Representing reality in models
	Common feature patterns
	Creating good features

	Feature selection
	Selecting the best individual features

	Feature creation
	Principal Component Analysis
	Creating your own transformer
	The transformer API
	Implementing a Transformer

	Unit testing
	Putting it all together
	Summary

	Chapter 6: Social Media Insight using Naive Bayes
	Disambiguation
	Downloading data from a social network
	Loading and classifying the dataset
	Creating a replicable dataset from Twitter

	Text transformers
	Bag-of-words models
	n-gram features
	Other text features

	Naive Bayes
	Understanding Bayes' theorem
	Naive Bayes algorithm
	How it works

	Applying of Naive Bayes
	Extracting word counts
	Converting dictionaries to a matrix
	Putting it all together
	Evaluation using the F1-score

	Getting useful features from models
	Summary

	Chapter 7: Follow Recommendations Using Graph Mining
	Loading the dataset
	Classifying with an existing model

	Getting follower information from Twitter
	Building the network

	Creating a graph
	Creating a similarity graph

	Finding subgraphs
	Connected components
	Optimizing criteria

	Summary

	Chapter 8: Beating CAPTCHAs with Neural Networks
	Artificial neural networks
	An introduction to neural networks

	Creating the dataset
	Drawing basic CAPTCHAs
	Splitting the image into individual letters
	Creating a training dataset

	Training and classifying
	Back-propagation

	Predicting words
	Improving accuracy using a dictionary
	Ranking mechanisms for word similarity
	Putting it all together

	Summary

	Chapter 9: Authorship Attribution
	Attributing documents to authors
	Applications and use cases
	Authorship attribution

	Getting the data
	Using function words
	Counting function words
	Classifying with function words

	Support Vector Machines
	Classifying with SVMs
	Kernels

	Character n-grams
	Extracting character n-grams

	The Enron dataset
	Accessing the Enron dataset
	Creating a dataset loader

	Putting it all together
	Evaluation
	Summary

	Chapter 10: Clustering News Articles
	Trending topic discovery
	Using a web API to get data
	Reddit as a data source
	Getting the data

	Extracting text from arbitrary websites
	Finding the stories in arbitrary websites
	Extracting the content

	Grouping news articles
	The k-means algorithm
	Evaluating the results
	Extracting topic information from clusters
	Using clustering algorithms as transformers

	Clustering ensembles
	Evidence accumulation
	How it works
	Implementation

	Online learning
	Implementation

	Summary

	Chapter 11: Object Detection in Images using Deep Neural Networks
	Object classification
	Use cases

	Application scenario
	Deep neural networks
	Intuition
	Implementing deep neural networks

	An Introduction to TensorFlow
	Using Keras
	Convolutional Neural Networks

	GPU optimization
	When to use GPUs for computation
	Running our code on a GPU
	Setting up the environment

	Application
	Getting the data
	Creating the neural network
	Putting it all together

	Summary

	Chapter 12: Working with Big Data
	Big data
	Applications of big data

	MapReduce
	The intuition behind MapReduce
	A word count example

	Hadoop MapReduce

	Applying MapReduce
	Getting the data

	Naive Bayes prediction
	The mrjob package

	Extracting the blog posts
	Training Naive Bayes
	Putting it all together
	Training on Amazon's EMR infrastructure
	Summary

	Appendix: Next Steps...
	Getting Started with Data Mining
	Scikit-learn tutorials
	Extending the Jupyter Notebook
	More datasets
	Other Evaluation Metrics
	More application ideas

	Classifying with scikit-learn Estimators
	Scalability with the nearest neighbor
	More complex pipelines
	Comparing classifiers
	Automated Learning

	Predicting Sports Winners with Decision Trees
	More complex features
	Dask
	Research

	Recommending Movies Using Affinity Analysis
	New datasets
	The Eclat algorithm
	Collaborative Filtering

	Extracting Features with Transformers
	Adding noise
	Vowpal Wabbit
	word2vec

	Social Media Insight Using Naive Bayes
	Spam detection
	Natural language processing and part-of-speech tagging

	Discovering Accounts to Follow Using Graph Mining
	More complex algorithms
	NetworkX

	Beating CAPTCHAs with Neural Networks
	Better (worse?) CAPTCHAs
	Deeper networks
	Reinforcement learning

	Authorship Attribution
	Increasing the sample size
	Blogs dataset
	Local n-grams

	Clustering News Articles
	Clustering Evaluation
	Temporal analysis
	Real-time clusterings

	Classifying Objects in Images Using Deep Learning
	Mahotas
	Magenta

	Working with Big Data
	Courses on Hadoop
	Pydoop
	Recommendation engine
	W.I.L.L

	More resources
	Kaggle competitions
	Coursera

	Index

